• Title/Summary/Keyword: Heterotrophic bacterial number

Search Result 26, Processing Time 0.021 seconds

Distributions and heterotrophic actibities of bacteria in Lake Paro (파로호 수중생태계에서의 미생물 분포 및 활성도)

  • 안태석;이동훈
    • Korean Journal of Microbiology
    • /
    • v.26 no.3
    • /
    • pp.230-236
    • /
    • 1988
  • The distributions of bacterial numbers and activities were studied bimonthly in 1987, at 3 sites in Lade Paro for elucidating the changes by disturbance of aquatic ecosystem. The total bacterial number was $0.3\times 10^{5}-13.1\times ^{5}$ cells/ml. The geterotrophic bacterial number had the variance from $1.9\times 10^{3}$ CFUs/ml to $3.1\times 10^{4}$CFUs/ml and the variation trend was similar to that of the total bacterial number. The proportions of alpha-glucosidase or beta-glucosidase releasing bacteria showed temporal changes rather than spatial changes. The proportions of phosphatase releasing bacteria had the maximum values, 22.7-83.0%, in July. The electron transpory system activity revealed the variation from $480{\mu}gO_{2}$/l/day to $1696{\mu}gO_{2}$/l/day and hagher values at upper stream and in summer. The degradation fraction by phosphatase was 0.4-9.1%/h and increased with temperature. The maximum value of heterotrophic activity was 8.2%/h in summer. Eventhough the distributions of total bacteria and heterotrophic bacteria were affected by the water disturbance but microbial activities and proportions of the specific enzume releasing bacteria were not affected.

  • PDF

Bacterial Removal Efficiencies by Unit Processes in a Sewage Treatment Plant using Activated Sludge Process (활성슬러지공정 하수종말처리장의 단위공정별 세균 제거효율)

  • Lee, Dong-Geun;Jung, Mira;Sung, Gi Moon;Park, Seong Joo
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.871-879
    • /
    • 2010
  • To figure out the removal efficiency of indicator and pathogenic bacteria by unit processes of a sewage treatment plant using activated sludge process, analyses were done for incoming sewage, influent and effluent of primary clarifier, aeration tank, secondary clarifier and final discharge conduit of the plant. A matrix of bacterial items (average of bacterial reduction [log/ml], p value of paired t-test, number of decreased cases of twenty analyses, removal percentage only for decreased cases) between incoming sewage and final effluent of the plant were heterotrophic plate counts (1.54, 0.000, 20, 95.01), total coliforms (1.38, 0.000, 19, 83.94), fecal coliforms (0.90, 0.000, 20, 94.84), fecal streptococci (0.90, 0.000, 20, 98.08), presumptive Salmonella (0.23, 0.561, 7, 99.09), and presumptive Shigella (1.02, 0.002, 15, 92.98). Total coliforms, fecal coliforms, heterotrophic plate counts, and fecal streptococci showed highest decrease through secondary clarifier about 1-log (p<0.001) between 88% and 96%, and primary clarifier represented the significant (p<0.05) decrease. However, final effluent through discharge conduit showed higher total coliforms and fecal streptococci than effluent of secondary clarifier (p<0.05). In addition, final effluent once violated the water quality standard while effluent of secondary clarifier satisfied the standard. Hence some control measures including elimination of deposits in discharge conduit or disinfection of final effluent are necessary.

Effects of Acidification on the Changes of Microbial Diversity in Aquatic Microcosms

  • Young-Beom Ahn;Hong-Bum Cho;Byung Re Min;Yong-Keel Choi
    • Animal cells and systems
    • /
    • v.3 no.2
    • /
    • pp.153-159
    • /
    • 1999
  • In an artificial pH-gradient batch culture system, the effects of acidification on the species composition of a heterotrophic bacterial community were analyzed. As a result of this study, it was found that total bacteria numbers were not affected by acidification and that the population of hetero-trophic bacteria decreased as pH became lower. The heterotrophic bacteria isolated from the entire pH gradient were 12 genera and 22 species. Among them, 64% were gram negative and 36% were gram positive bacteria. As pH decreased, the distribution rate of gram negative bacteria increased while that of gram positive bacteria decreased. The diversity of genera decreased from 13 to 5 as pH decreased from 7 to 3. The G+C content of all of the 202 isolated strains varied from 22.8 to 77.0%, and increased in interspecies of same genus as pH decreased. As a result of clustering analysis, the diversity index of species ranged from 1.13 to 2.37, and it had lower indices as pH decreased. In order to evaluate the diversity of numbers of sample of different size, a rarefaction method was used to analyze the expected number of species appearance according to pH. The statistical significance of species diversity was verified by the fact that the number decreased at lower pH.

  • PDF

The Environmental Factors Affecting the Distribution and Activity of Bacteria in the Estuary of Naktong River (낙동강 하구의 세균분포와 활성에 미치는 환경요인)

  • 안태영;조기성;하영칠
    • Korean Journal of Microbiology
    • /
    • v.29 no.5
    • /
    • pp.329-338
    • /
    • 1991
  • From July 1985 to December 1986, 28 variables of phycal-chemical factors, bacteria and heterotrophic activity were investigated 17 times at 3 stations in the estuary of Naktong River and the influences of environmental factors to bacterial population and heterotrophic activity were analyzed through multiple regression. The results of multiple regression were as follows. At station 1, total bacteria and heterotrophic bacteria(Z-25) could explain 57% of the variation of maximum uptake velocity for glucose and 54% of turnover time for glucose was explained by total coliform bacteria and MBOD, Sixty four percent of the variation of Kt+SN was accounted for salinity, MBOD-N and inorganic phosphate. Turnover rate for acetate was also accounted for the change of MBOD-P by 56%. At station 2 maximum uptake velocity for glucose depends on MBOD-N by 81%; turnover time on bacteria by 50%; Kt+Sn on avilable nutrient by 61%. More than 50% of maximum uptake velocity and turnover time for glucose were influenced by bacteria and that of Kt+Sn by the change of nutrient in the surface water of station 3. In the bottom water of station 3, the change of maximumuptake velocity, turnover time and Kt+Sn for glucose was controlled by total bacteria and available nutrient, bacteria, the change of nutrient salts respectively. On the whole, more than 50% of maximum uptake velocity and turnover time for glucose could be due to the change in the number of bacetria and the value of Kt+Sn was affected by the change of nutrient salts. Turnover rate for acetate was controlled by available phosphate at station 1 and by bacteria at station 2 and 3, which showed a distinct difference between the environmental factors which govern the rate of glucose and acetate uptake in the Naktong esturine ecosystem. And bacterial communities were controlled by available nutrients at station 1, by nutrient salts and salinity at station 2 and in the surface water of station 3 and by salinity in the bottom water of station 3.

  • PDF

Effects of Acidification on the Species Compositions of Heterotrophic Bacterial Community in Microcosm (수계 종속영양세균 군집의 종조성에 미치는 산성화의 영향)

  • 안영범;조홍범;최영길
    • Korean Journal of Microbiology
    • /
    • v.33 no.3
    • /
    • pp.175-180
    • /
    • 1997
  • In an artificial pH-gradient hatch culture system, the author analyzed the effects of acidification on the species composition of heterotrophic bacteria. As the result of this study, it was found that the numbers of total bacteria were not affected by acidification and that the population size of heterotrophic bacteria decreased as pH became lower. The heterotrophic bacteria isolated from all of the pH gradient were 12 genera and 22 species. and among them, gram negative and gram positive bacteria were 64% and 36%, respectivcly. As pH decreased, the distribution rate of gram negative bacteria increased while that of gram positive bacteria decreased. Regarding to distrihution rate of genuses in each pH gradient, 13 genuses appeared at pH 7 while only 5 genuses appeared at pH 3. which means that the diversity of genera decrease as pH decreased. As a result of cluster analysis, diversity indices 01 species had ranges from 1.13 to 2.37, and decreased as pH decreased. In order to evaluate the diversity of different size samples, we analyzed the expected number of species appearance according to pH by rarefaction method. The statistical significance of species diversity was verified by the fact that the number decreased at lower pH.

  • PDF

Analysis of the Changes in Metabolic Diversity of Microbial Community in pH-gradient Microcosm

  • Ahn, Young-Beom;Cho, Hong-Bum;Park, Yong-Keel
    • Journal of Microbiology
    • /
    • v.37 no.1
    • /
    • pp.1-9
    • /
    • 1999
  • The Biolog redox technology was carried out for evaluation of acidification effect on microbial communities at each stage of pH gradient microcosm. While the number of heterotrophic bacterial population and activities of extracellular enzyme decreased as the pH decreased, the number of total bacteria in the microcosm was not affected. The average color development of sample at each pH-gradient showed a sigmoidal curve, and at higher pH, more overall color development appeared in Biolog plates. Average color development value in Biolog plates was stabilized at 50 hours as an optimum incubation time. The color production in the Biolog plates was caused by cell density at above pH 5.0, but by cell activity below pH 4.0. Principal component analysis of color responses revealed distinctive patterns among the pH-gradient microcosm samples.

  • PDF

Heterotrophic Bacterial Secondary Productivity and Effect of Environmental Parameters is Naktong Embayment Korea (낙동강하구 연안수역의 세균 생산성과 환경요인의 영향)

  • 김미정;윤인길;정익교;권오섭
    • Korean Journal of Microbiology
    • /
    • v.36 no.2
    • /
    • pp.125-129
    • /
    • 2000
  • The ecology of estuarine bacteria in terms of bactenal production and biomass was investigated in Naktong embayment. Intrusion of eutrophic freshwater was one of the major factors affecting on the ecosystem of Naktong embayment. Total bacterial number varied from $2.2{\times}10^5 cells/ml to 9.8{\times}10^5 $ cellslml, and the variation ranges of the bacterial biovolume and biomass were 0.023-0.201TEX>$\mu$$m^3$/cell and 0.010-0.140 TEX>$\mu$g-Clml, respectively, and there was a reciprocal relationship between bacterial number and biomass. Pool size of thymidine varied from 12.93 nM to 44.56 nM. The pool during summer was supposed to be composed of easily utilizable form than the typical one of winter, which suggests thal bacterial productivity measured in summer may be underestimated. Bactenal production varied from 0.12 TEX>$\mu$g-Cllh to 22.38 TEX>$\mu$g-Clllh, and the values were low in winter and increased from spring and reached the highest in summer. The variations of bacterial production showed high correlations with temperature, chlorophyll a, and bacterial biomass. These results suggested that the main source of organic matters which influence the bacterial production in Naktong embayment may be the photosynthetic excretory products of phytoplanktons.

  • PDF

Influence of Pipe Materials and VBNC Cells on Culturable Bacteria in a Chlorinated Drinking Water Model System

  • Lee, Dong-Geun;Park, Seong-Joo;Kim, Sang-Jong
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.9
    • /
    • pp.1558-1562
    • /
    • 2007
  • To elucidate the influence of pipe materials on the VBNC (viable but nonculturable) state and bacterial numbers in drinking water, biofilm and effluent from stainless steel, galvanized iron, and polyvinyl chloride pipe wafers were analyzed. Although no HPC (heterotrophic plate count) was detected in the chlorinated influent of the model system, a DVC (direct viable count) still existed in the range between 3- and 4-log cells/ml. Significantly high numbers of HPC and DVC were found both in biofilm and in the effluent of the model system. The pipe material, exposure time, and the season were all relevant to the concentrations of VBNC and HPC bacteria detected. These findings indicate the importance of determining the number of VBNC cells and the type of pipe materials to estimate the HPC concentration in water distribution systems and thus the need of determining a DVC in evaluating disinfection efficiency.

Effects of Diverse Water Pipe Materials on Bacterial Communities and Water Quality in the Annular Reactor

  • Jang, Hyun-Jung;Choi, Young-June;Ka, Jong-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.2
    • /
    • pp.115-123
    • /
    • 2011
  • To investigate the effects of pipe materials on biofilm accumulation and water quality, an annular reactor with the sample coupons of four pipe materials (steel, copper, stainless steel, and polyvinyl chloride) was operated under hydraulic conditions similar to a real plumbing system for 15 months. The bacterial concentrations were substantially increased in the steel and copper reactors with progression of corrosion, whereas those in stainless steel (STS) and polyvinyl chloride (PVC) reactors were affected mainly by water temperature. The heterotrophic plate count (HPC) of biofilms was about 100 times higher on steel pipe than other pipes throughout the experiment, with the STS pipe showing the lowest bacterial number at the end of the operation. Analysis of the 16S rDNA sequences of 176 cultivated isolates revealed that 66.5% was Proteobacteria and the others included unclassified bacteria, Actinobacteria, and Bacilli. Regardless of the pipe materials, Sphingomonas was the predominant species in all biofilms. PCR-DGGE analysis showed that steel pipe exhibited the highest bacterial diversity among the metallic pipes, and the DGGE profile of biofilm on PVC showed three additional bands not detected from the profiles of the metallic materials. Environmental scanning electron microscopy showed that corrosion level and biofilm accumulation were the least in the STS coupon. These results suggest that the STS pipe is the best material for plumbing systems in terms of the microbiological aspects of water quality.

경기만에서 석유분해세균의 분포 및 석유분해능

  • 이정래;황열순;이기승;이건형;김상종
    • Korean Journal of Microbiology
    • /
    • v.30 no.3
    • /
    • pp.187-192
    • /
    • 1992
  • The spatial and temporal distribution of petroleum-degrading bacteria(PDB) was studied at six sampling sites in Kyeonggi Bay of the Yellow Sea fiom March 1990 to October 1991. In addition, petroleum-degrading potcntial of natural ~iiai-ineb acterial population was studied at different culturc contlitions. During the period o f stutly. thc heterotrophic bacterial number and PDB number were n1e;rsured in the range of 7 000-108.400 CFU/nil. 0-2.800 MPN1100 mi. respectively. The spatial tlistribution of PDB wa\ highly affected by presence of petroleum hydrocarbon. In laboratory cxperirncnt. petrolcu~n biodegradation wac enhanced hy addition of yeast cxtracl. cell free cxtr:~ct. anti rnixctl culture of PI)B.

  • PDF