• Title/Summary/Keyword: Heterometallic

Search Result 14, Processing Time 0.02 seconds

Polymerization of Ethylene Initiated with Trisiloxane-bridged Heterometallic Dinuclear Metallocene

  • Lee, Dong-Ho;Lee, Hun-Bong;Kim, Woo-Sik;Min, Kyung-Eun;Park, Lee-Soon;Seo, Kwan-Ho;Kang, Inn-Kyu;Noh, Seok-Kyun;Song, Chang-Keun;Woo, Sang-Sun;Kim, Hyun-Joon
    • Macromolecular Research
    • /
    • v.8 no.5
    • /
    • pp.238-242
    • /
    • 2000
  • The new trisiloxane-bridged heterometallic dinuclear metallocenes, hexamethyltrisiloxanediyl(cyclopentadienyltitanium trichloride) (cyclopentadienylindenyl zirconium dichloride) , $C_3ITi-Cp(CH_3)_2Si-O-Si(CH_3)_2-O-Si(CH_3)_2-Cp-ZrIndCI_2$ (1) and hexamethyltrisiloxanediyl (cyclopentadienylindenylhafnium dichloride) (cyclopentadienylindenyl zirconium dichloride), $C_2IndHf-Cp(CH_3)_2Si-O-Si(CH_3)_2-Cp-ZrIndCl_2$ 2) connecting two dissimilar metallocenes were synthesized and used for ethylene polymerization in the presence of modified methylaluminoxane (MMAO) cocatalyst. The catalytic activity of heterometallic dinuclear metallocenes, 1 and 2 was lower than that of corresponding mononuclear metal-locene as well as two physically mixed catalysts, $CpTiCl_2/Cp_2ZrCl_2 and Cp_2HfCl_2/Cp_2ZrCl_2$. On the tither hand, MWD of PE obtained with 1 and 2 was remarkably broader ($M_w/M_n$) became up to 9.4) than those of PEs prepared with the corresponding mononuclear metallocenes and mixed catalysts. With analysis by GPC and CFC, it was found that PE produced by the heterometallic dinuclear metallocenes exhibited the definite bimodal GPC curves that should cause the broadening of MWD.

  • PDF

Cyanide- and Phenoxo-Bridged Heterobimetallic Fe(III)-Mn(III) Coordination Polymer: Synthesis, Crystal Structures and Magnetic Properties

  • Zhang, Daopeng;Kong, Lingqian;Li, Yueyun;Wang, Ping;Chen, Xia
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2684-2688
    • /
    • 2014
  • Two two-dimensional cyanide- and phenoxo-bridged heterometallic M(II)-Mn(III) (M = Ni, Pd) coordination polymers $\{[Mn(saltmen)]_4[Ni(CN)_4]\}(ClO_4)_2{\cdot}CH_3OH{\cdot}H_2O$ (1) and $\{[Mn(saltmen)]_4[Pd(CN)_4]\}(ClO_4)_2{\cdot}CH_3CN{\cdot}H_2O$ (2) ($saltmen^{2-}$ = N,N'-(1,1,2,2-tetramethylethylene)bis(salicylideneaminato)dianion) have been obtained by using $K_2[M(CN)_4]$ as building blocks and a salen-tpye Schiff-base manganese(III) compound as assembling segment. Single X-ray analysis reveals their isostrutural cyanide-bridged $MMn_4$ pentanuclear cationic structure. The four Schiff base manganese units of the pentanuclear entity are self-complementary through the phenoxo oxygen atoms from the neighboring complex, therefore forming cyanide- and phenoxo-bridged 2D sheet-like structure. Investigation over magnetic susceptibilities reveals the overall ferromagnetic coupling between the adjacent Mn(III) ions bridged by the phenoxo oxygen atoms with J = 2.13 and $2.21cm^{-1}$ for complexes 1 and 2, respectively.

Cyanide-bridged Trinuclear and Ethylenediamine-bridged One-dimensional Cobalt(III)-Manganese(II) Complexes: Synthesis, Crystal Structures and Magnetic Properties

  • Zhang, Daopeng;Zhang, Lifang;Zhao, Zengdian;Ni, Zhonghai
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2544-2548
    • /
    • 2011
  • Two pyridinecarboxamide cobalt dicyanide building blocks and Mn(III) compounds have been employed to assemble cyanide-bridged heterometallic complexes, resulting in three trinuclear cyanide-bridged $Co^{III}-Mn^{II}$ complexes: $\{[Mn(MeOH)_4][Co(bpb)(CN)_2]_2\}{\cdot}2MeOH{\cdot}2H_2O$ (1), $\{[Mn(MeOH)_4][Co(bpmb)(CN)_2]_2\}{\cdot}2MeOH{\cdot}2H_2O$ (2) and $\{[Mn(DMF)_2(en)_2][Co(bpb)(CN)_2]_2\}{\cdot}2DMF{\cdot}H_2O$ (3) ($bpb^{2-}$ = 1,2-bis(pyridine-2-carboxamido)benzenate, $bpmb^{2-}$ = 1,2-bis(pyridine-2-carboxamido)-4-methyl-benzenate, en = ethylenediamine). Single crystal X-ray diffraction analysis shows their similar sandwich-like structures, in which the two cyanide-containing building blocks act as monodentate ligands through one of their two cyanide groups to coordinate the Mn(II) center. For complex 3, it was further linked into one-dimensional structure by ethylenediamine acting as bridges. Investigation of the magnetic properties of complex 3 reveals weak antiferromagnetic coupling between the neighboring Mn(II) centers through the bridging ethylenediamine molecule. A best-fit to the magnetic susceptibilities of complex 3 gave the magnetic coupling constant J = -0.073(2) $cm^{-1}$.

Nanoparticle plasmonics: from single molecule chemistry to materials science

  • Kim, Ji-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.76.2-76.2
    • /
    • 2015
  • I will present my research group's recent investigation on how the localized plasmon of a nanoparticle interacts with another plasmon, and with nearby molecules. First, I will demonstrate the use of scattering-type scanning near-field microscopy (s-SNOM) to directly visualize the capacitive / conductive coupling in dimeric nanoparticles and heterometallic nanorods. Second, I will talk about the use of gap-plasmons to locally induce photochemical reactions, and to follow chemical kinetics of individual organic molecules using the gap-plasmons. As a last topic, I will talk about the use of near-field coupling between a scanning probe and graphenes to visualize / identify the stacking domains (e. g., ABA versus ABC-type stacking in triple layer) hidden in multilayer graphenes.

  • PDF

Synthesis of Chiral Intermediates Catalyzed by New Chiral Polymeric (Salen) Cobalt Complexes Bearing Lewis Acidic Metal Halides

  • Lee, Kwang-Yeon;Kawthekar, Rahul B.;Kim, Geon-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.9
    • /
    • pp.1553-1561
    • /
    • 2007
  • The new type of heterometallic chiral polymer salen complexes have been synthesized and it has been found that group 13 metal salts (AlCl3, GaCl3 and InCl3) combined to cobalt salen unit played the crucial role in the asymmetric kinetic resolution of racemic epoxides. Polymeric salen catalysts showed very high reactivity and enantioselectivity for the asymmetric ring opening of terminal epoxide with diverse nucleophiles. They provide the enantiopure useful chiral intermediates such as chiral terminal epoxides and α -aryloxy alcohols in one-step process. An efficient methodology for providing very high enantioselectivity can be achieved in the synthesis of valuable chiral building blocks via our catalytic system by combination of various asymmetric ring opening reactions.