Saccharomyces cerevisiae로부터 외래 $\alpha$-amylase의 발현 및 분비를 증진시키기 위하여 여러 실험이 수행되었다. ADC1 promoter와 mouse salivary $\alpha$-amylase cDNA gene의 native signal sequence를 효모의 PRB1 promoter와 invertase leader sequence로 대치한 plasmid vector pCNN(AMY)를 제작하였다. 효모세포에서 생성된 $\alpha$-amylase의 세포외로의 분비율은 mouse o-amylase의 native signal sequence인 경우는 약 89.4%이었으며 invertase leader sequence로 치환된 경우는 96.3%로 분비효율이 증진되었다. 야생주인 K8l/pCNN(AMY)와 호흡결여변이주인 K81/pCNN(AMY)p-의 혐기적 조건하에서의 배양 결과 $\alpha$-amylase 생산량이 K8l/pCNN(AMY)보다 K81/pCNN(AMY)p-가 약 5~8배 정도 증가하였다. $\alpha$-Amylase의 생산에 있어서 배지조성에 따른 K81/pCNN(AMY)의 생산증진의 비교는 배지성분인 yeast extract와 peptone의 구성비율을 비교하였을 때 yeast extract 1%와 peptone 2%, NaCl의 경우 100 mM, 2-mercaptoethanol인 경우에는 0.015%(w/v)을 첨가하였을 때 최대 효소 활성을 나타내었고, 특히 2-mercaptoethanol인 경우에는 대조구에 비해 효소 생산량이 약 3배 정도 증진되었다.
Bacillus polyfermenticus SCD was transformed by the recombinant shuttle vector for Bacillus and Escherichia coli containing 3 antibiotic resistant genes and an ${\alpha}$-amylase gene from Bifidobacterium adolescentis Int57. The ${\alpha}$-amylase gene fused to a secretion sequences was expressed under the control of the promoter of amylase gene from B. subtilis var. natto. The recombinant plasmid was maintained stably in the transformants producing the ${\alpha}$-amylase. The enzyme was secreted to outside of the cell and showed the similar enzyme activity as that of Bacillus subtilis BD170 under the same conditions of pH and growth temperature. Because of the relatively easy transformation and the secretion of the enzyme, the transformants of B. polyfermenticus SCD may give a new strategy in the production of foreign genes.
As an efffort ot construct LAB (latice acid bacteria), capable of utilizing starch as fermentation substrate without the aid of externally supplied enzymes, plasmid vectors containing the amyL($\alpha$-amylase/pullulansase gene) from Clostridium thermophydrosulfuricum, and glucoamylase cDNA from Asperigillus shirousamii were constructed and introduced itno E. coli and L. lactis. For expression in procaryotes , 1.9kb glucoamylase cDNA encoding the mature form of enzyme was PCR amplified and translationaly fused to a PCR amplified 260 bp fragment containing the promotor and secretion signals of amyl in the same reading frame. The production of $\alpha$-amylase, Apu, and glucoamlase in E. coli and L. lactis was confirmed by enzyme assay and zymography . Enzymeswere detected in both cellpellets and supernatants, indicating theworking of scretion signals in heterologous hosts. The efficiencies of secretion were varibale depending on the gene and host. The highest $\alpha$- amylase acitivity observed was 1.1 units and most activiity was detected from thecell pellets. The degree of gene expression in both hosts and the effect on the growth of hosts were examined.
Pyrococcus furiosus α-amylase can hydrolyze α-1,4 linkages in starch and related carbohydrates under hyperthermophilic condition (~ 100℃), showing great potential in a wide range of industrial applications, while its relatively low productivity from heterologous hosts has limited the industrial applications. Bacillus subtilis, a gram-positive bacterium, has been widely used in industrial production for its non-pathogenic and powerful secretory characteristics. This study was conducted to increase production of P. furiosus α-amylase in B. subtilis through three strategies. Initial experiments showed that co-expression of P. furiosus molecular chaperone peptidyl-prolyl cis-trans isomerase through genomic integration mode, using a CRISPR/Cas9 system, increased soluble amylase production. Therefore, considering that native P. furiosus α-amylase is produced within a hyperthermophilic environment and is highly thermostable, heat treatment of intact culture at 90℃ for 15 min was performed, thereby greatly increasing soluble amylase production. After optimization of the culture conditions (nitrogen source, carbon source, metal ion, temperature and pH), experiments in a 3-L fermenter yielded a soluble activity of 3,806.7 U/ml, which was 3.3- and 28.2-fold those of a control without heat treatment (1,155.1 U/ml) and an empty expression vector control (135.1 U/ml), respectively. This represents the highest P. furiosus α-amylase production reported to date and should promote innovation in the starch liquefaction process and related industrial productions. Meanwhile, heat treatment, which may promote folding of aggregated P. furiosus α-amylase into a soluble, active form through the transfer of kinetic energy, may be of general benefit when producing proteins from thermophilic archaea.
The recombinant DNA pLR5cat_PSAB, in which pediocin PA-1 structural and immunity genes (pedAB) fused with the promoter and deduced signal sequence of an ${\alpha}$-amylase gene from a bifidobacterial strain were inserted in Escherichia coli-lactobacilli shuttle vector pLR5cat, was transferred to Lactobacillus reuteri KCTC 3679 and the transformant presented bacteriocin activity. The recombinant L. reuteri KCTC 3679 transformed with the shortened pLR5cat(S)_PSAB, where a nonessential region for the lactobacilli replicon was removed, also showed bacteriocin activity. The molecular mass of the secreted pediocin PA-1 from the recombinant bacteria was the same as that of native pediocin PA-1 (~4.6 kDa) from Pediococcus acidilactici K10 on a sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gel. In cocultures with Listeria monocytogenes, the recombinant L. reuteri KCTC 3679 effectively reduced the viable cell count of the pathogenic bacterium by a 3 log scale compared with a control where L. monocytogenes was incubated alone.
A food-grade integration vector based on site-specific recombination was constructed. The 5.7-kb vector, pIMA20, contained an integrase gene and a phage attachment site originating from bacteriophage A2, with the ${\alpha}$-galactosidase gene from Lactobacillus plantarum KCTC 3104 as a selection marker. pIMA20 was also equipped with a controllable promoter of nisA ($P_{nisA}$) and a signal peptide-encoding sequence of usp45 ($SP_{usp45}$) for the production and secretion of foreign proteins. pIMA20 and its derivatives mediated site-specific integration into the attB-like site on the Lactococcus lactis NZ9800 chromosome. The vector-integrated recombinant lactococci were easily detected by the appearance of blue colonies on a medium containing $X-{\alpha}-gal$ and also by their ability to grow on a medium containing melibiose as the sole carbon source. Recombinant lactococci maintained these traits in the absence of selection pressure during 100 generations. The ${\alpha}-amylase$ gene from Bacillus licheniformis, lacking a signal peptide-encoding. sequence, was inserted downstream of $P_{nisA}\;and\;SP_{usp45}$ in pIMA20, and the plasmid was integrated into the L. lactis chromosome. ${\alpha}-Amylase$ was successfully produced and secreted by the recombinant L. lactis, controlled by the addition and concentration of nisin.
The influences of impeller types on morphology and protein expression were investigated in a submerged culture of Aspergillus oryzae. The impeller types strongly affected mycelial morphology and protein production in batch and fed-batch fermentations. Cells that were cultured by propeller agitation grew in the form of a pellet, whereas cells that were cultured by turbine agitation grew in a freely dispersed-hyphal manner and in a clumped form. Pellet-grown cells showed high levels of protein production for both the intracellularly heterologous protein (${\beta}$-glucuronidase) and the extracellularly homologous protein (${\alpha}$-amylase). The feeding mode of the carbon source also influenced the morphological distribution and protein expression in fed-batch fermentation of A. oryzae. Pulsed-feeding mainly showed high protein expression and homogeneous distribution of pellet whereas continuous feeding resulted in less protein expression and heterogeneous distribution with pellet and dispersed-hyphae. The pellet growth with propeller agitation paralleling with the pulsed-feeding of carbon source showed a high level of protein production in the submerged fed-batch fermentation of recombinant A. oryzae.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.