• 제목/요약/키워드: Heterologous

검색결과 469건 처리시간 0.03초

Safety and immunogenicity of different booster vaccination schemes for COVID-19 used in El Salvador

  • Xochitl Sandoval;Rhina Dominguez;Delmy Recinos;Susana Zelaya;Patricia Cativo;Guillermo Horacio Docena
    • Clinical and Experimental Vaccine Research
    • /
    • 제13권1호
    • /
    • pp.35-41
    • /
    • 2024
  • Purpose: The effectiveness of coronavirus disease 2019 (COVID-19) vaccination schemes and the combination of vaccines of various platforms for administering booster doses is still being studied since it will depend on the population's response to vaccines. We aimed to evaluate the safety, protection, and immunogenicity of the Salvadorean population's third dose booster COVID-19 vaccine and the potential benefit of homologous vs. heterologous regimens. Materials and Methods: This is an analytical observational cohort study in a population aged 18 to 65 years that was primarily vaccinated with AstraZeneca, Sinovac, or Pfizer/BioNTech. Volunteers were recruited (n=223) and followed up for 3 months after receiving the 3rd vaccine (BNT162b2) as a booster. Adverse reactions were monitored, serum anti-spike immunoglobulin G (IgG) was assessed by chemiluminescence, and a polymerase chain reaction was carried out when subjects developed clinical signs. Results: The cohorts finally included 199 participants, and we observed only mild adverse effects in all cohorts. A significant increase in specific IgG levels was found after the booster dose in all cohorts. The heterologous scheme with Sinovac showed the greatest increase in antibody titer, and a decrease was observed in all participants after 3 months. During the follow-up period, 30 participants showed symptomatology compatible with COVID-19, but only four were laboratory-confirmed and they showed mild clinical signs. Conclusion: These findings indicate that the booster doses used were safe and promoted an immediate increase in immunogenicity, which decreased over time. The heterologous regimen showed stronger immunogenicity compared to the messenger RNA-based homologous scheme.

Epitope발현 DNA Vaccine과 Recombinant Vaccinia Virus를 이용한 Heterologous Prime-boost Vaccination에 의하여 유도되는 CD8+ T 세포 매개성 면역 (CD8+ T Cell-mediated Immunity Induced by Heterologous Prime-boost Vaccination Based on DNA Vaccine and Recombinant Vaccinia Virus Expressing Epitope)

  • 박성옥;윤현아;;이존화;채준석;어성국
    • IMMUNE NETWORK
    • /
    • 제5권2호
    • /
    • pp.89-98
    • /
    • 2005
  • Background: DNA vaccination represents an anticipated approach for the control of numerous infectious diseases. Used alone, however, DNA vaccine is weak immunogen inferior to viral vectors. In recent, heterologous prime-boost vaccination leads DNA vaccines to practical reality. Methods: We assessed prime-boost immunization strategies with a DNA vaccine (minigene, $gB_{498-505}$ DNA) and recombinant vaccinia virus $(vvgB_{498-505})$ expressing epitope $gB_{498-505}$ (SSIEF ARL) of CD8+ T cells specific for glycoprotein B (gB) of herpes simplex virus (HSV). Animals were immunized primarily with $gB_{498-505}$ epitope-expressing DNA vaccine/recombinant vaccinia virus and boosted with alternative vaccine type expressing entire Ag. Results: In prime-boost protocols using vvgBw (recombinant vaccinia virus expressing entire Ag) and $vvgB_{498-505}$, CD8+ T cell-mediated immunity was induced maximally at both acute and memory stages if primed with vvgBw and boosted with $vvgB_{498-505}$ as evaluated by CTL activity, intracellular IFN-staining, and MHC class I tetramer staining. Similarly $gB_{498-505}$ DNA prime-gBw DNA (DNA vaccine expressing entire Ag) boost immunization elicited the strongest CD8+ T cell responses in protocols based on DNA vaccine. However, the level of CD8+ T cell-mediated immunity induced with prime-boost vaccination using DNA vaccine expressing epitope or entire Ag was inferior to those based on vvgBw and $vvgB_{498-505}$. Of particular interest CD8+ T cell-mediated immunity was optimally induced when $vvgB_{498-505}$ was used to prime and gB DNA was used as alternative boost. Especially CD7+ T cell responses induced by such protocol was longer lasted than other protocols. Conclusion: These facts direct to search for the effective strategy to induce optimal CD8+ T cell-mediated immunity against cancer and viral infection.

출아효모에서 다양한 이종 유전자의 안정적 동시발현을 위한 방법의 비교 (Comparison of Methods for Stable Simultaneous Expression of Various Heterologous Genes in Saccharomyces cerevisiae)

  • 정회명;김연희
    • 한국미생물·생명공학회지
    • /
    • 제47권4호
    • /
    • pp.667-672
    • /
    • 2019
  • 본 연구는 출아효모 Saccharomyces cerevisiae을 이용해 이종 유전자(heterologous gene)를 효모염색체내에 도입하여 안정적으로 발현하기 위한 시스템의 비교에 대해서 연구하였다. 반복적으로 사용할 수 있는 Cre/loxP system의 이용을 위해 C. glabrata 유래 유전자를 선택마커로 사용하였고, universal pRS-CMT vector를 이용한 4종의 유전자(XYLP, XYLB, GRE3 및 XYL2 유전자)를 모델 유전자로 cloning하였다. 구축된 pRS-XylP, pRS-XylB, pRS-Gre3 및 pRS-Xyl2 plasmid를 이용한 4번의 sequential integration을 통해 효모염색체내에 도입된 4종의 유전자를 순차적으로 발현시킬 수 있었다. 또한 4종의 유전자 발현 cassette를 동시에 가지는 pRS-PBG2 plasmid에 의한 one-step integration을 통해서, 도입될 유전자들의 순서를 정할 수 있었으며 각 유전자들의 동시발현을 안정적으로 유지할 수 있었다. 결론적으로 본 연구에서 사용한 4종의 유전자들의 염색체내 동시 integration 및 발현을 위해서는 one-step integration이 효과적임을 확인하였으며, 적절한 유전자 도입방법을 통해 산업적으로 유용한 생물시스템의 손쉬운 육종이 가능하리라 기대한다.

Development of Cellobiose-utilizing Recombinant Yeast for Ethanol Production from Cellulose Hydrolyzate

  • Pack, Seung-Pil;Cho, Kwang-Myung;Kang, Hyen-Sam;Yoo, Young-Je
    • Journal of Microbiology and Biotechnology
    • /
    • 제8권5호
    • /
    • pp.441-448
    • /
    • 1998
  • A cellobiose-utilizing recombinant yeast having $\beta$-glucosidase activity was developed for ethanol production from a mixture of glucose and cellobiose. Using $\delta$-sequences of Tyl transposon of yeast as target sites for homologous recombination, a heterologous gene of $\beta$-glucosidase was integrated into the chromosome of Saccharomyces cerevisiae. The $\delta$-integrated recombinant yeast, Saccharomyces cerevisiae L2612 (Pb-BGL), showed perfect mitotic stability even in nonselective media and showed ca. 1.5 fold higher $\beta$-glucosidase activity than the recombinant yeast harboring the $2\mu$-based plasmid vector system. A mathematical model was developed to describe the $\beta$-glucosidase formation and ethanol production from the Saccharomyces cerevisiae L2612 ($p\delta-BGL$). The model newly described that the heterologous $\beta$-glucosidase production mediated by ADH1 promoter is regulated by glucose and repressed by ethanol.

  • PDF

Interspecies Complementation of the LuxR Family Pathway-Specific Regulator Involved in Macrolide Biosynthesis

  • Mo, SangJoon;Yoon, Yeo Joon
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권1호
    • /
    • pp.66-71
    • /
    • 2016
  • PikD is a widely known pathway-specific regulator for controlling pikromycin production in Streptomyces venezuelae ATCC 15439, which is a representative of the large ATP-binding regulator of the LuxR family (LAL) in Streptomyces sp. RapH and FkbN also belong to the LAL family of transcriptional regulators, which show greatest homology with the ATP-binding motif and helix-turn-helix DNA-binding motif of PikD. Overexpression of pikD and heterologous expression of rapH and fkbN led to enhanced production of pikromycin by approximately 1.8-, 1.6-, and 1.6-fold in S. venezuelae, respectively. Cross-complementation of rapH and fkbN in the pikD deletion mutant (ΔpikD) restored pikromycin and derived macrolactone production. Overall, these results show that heterologous expression of rapH and fkbN leads to the overproduction of pikromycin and its congeners from the pikromycin biosynthetic pathway in S. venezuelae, and they have the same functionality as the pathwayspecific transcriptional activator for the pikromycin biosynthetic pathway in the ΔpikD strain. These results also show extensive "cross-communication" between pathway-specific regulators of streptomycetes and suggest revision of the current paradigm for pathwayspecific versus global regulation of secondary metabolism in Streptomyces species.

Isolation and characterization of a protease deficient mutant of Aspergillus niger

  • 정혜종;이미애;박승문;김대혁
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2001년도 추계학술발표대회
    • /
    • pp.89-92
    • /
    • 2001
  • Aspergillus niger has been used as a host system to express many heterologous proteins. It has various advantages over other expression systems in that it is a small eukaryotic GRAS (Generally Recognized aS Safe) organism with a capacity of secreting large amount of foreign proteins. However, it has been known that the presence of an abundant protease is a limiting factor to express a heterologous protein. The proteases deficient mutants of A. niger were obtained using UV -mutagenesis. A total of 1 ${\times}$ $10^5$ spores were irradiated with 10-20% survival dose of UV, 600J/M2 at 280nm, and the resulting spores were screened on the casein -gelatin plates. Ten putative protease deficient mutants were further analyzed on the starch plates to differentiate the pro from the secretory mutant. An endogenous extracellular enzyme, glucose oxidase, was also examined to confirm that the mutant phenotype was due to the proteases deficiency rather than the mutation in the secretory pathway. The reduced proteolytic activity was measured using SDS-fibrin zymography gel, casein degradation assay, and bio-activity of a supplemented hGM -CSF (human Granulocyte-Macrophage Colony Stimulating Factor). Comparing with the wild type strain, less than 30 % of proteolytic activity was observed in the culture filtrate of the protease deficient mutant (pro -20) without any notable changes in cell growth and secretion.

  • PDF

Expression of ${\alpha}$-Galactosidase Gene from Leuconostoc mesenteroides SY1 in Lactobacillus brevis 2.14

  • Lee, Kang-Wook;Park, Ji-Yeong;Park, Jae-Yong;Chun, Ji-Yeon;Kim, Jeong-Hwan
    • Food Science and Biotechnology
    • /
    • 제17권5호
    • /
    • pp.1115-1118
    • /
    • 2008
  • ${\alpha}$-Galactosidase gene (aga) from Leuconostoc mesenteroides SY1 was expressed in a heterologous host, Lactobacillus brevis 2.14 using an Escherichia coli-Leuconostoc shuttle vector, pSJE. pSJEaga (pSJE carrying aga) was introduced into Lactobacillus brevis 2.14 by electroporation and transformation efficiency was $1.1{\times}10^3$ per ${\mu}g$ DNA. L. brevis transformants (TFs) showed higher ${\alpha}$-galactosidase (${\alpha}$-Gal) activities than cells containing pSJE. Transcription levels of aga in L. brevis 2.14 grown on different carbon sources (1%, w/v) were examined by slot blot analysis. Aga transcript levels and ${\alpha}$-Gal activities were higher in cells grown on melibiose, raffinose, and galactose than cells on glucose, sucrose, and fructose. Western blot result showed that L. brevis 2.14 harboring pSJEaga produced much more ${\alpha}$-Gal when grown on melibiose than on glucose.