• Title/Summary/Keyword: Heterologous

Search Result 465, Processing Time 0.027 seconds

On the Biological Functions of Equine Chorionic Gonadotropin (말의 융모성 성선자극 호르몬의 생화학적 기능)

  • 민관식;윤종택
    • Korean Journal of Animal Reproduction
    • /
    • v.26 no.3
    • /
    • pp.299-308
    • /
    • 2002
  • In horse, a single gene encodes both eCG and eLH $\beta$ subunits. The difference between eCG and eLH lies in the structure of their glycoresidues, which are both sialylated and sulfated in LH and sialylated in CG eCG consists of highly glycosyiated $\alpha$- and $\beta$-subunits and is an unique member of the gonadotropin family because it elicits response characteristics of both FSH and LH in other species than the horse. This dual activity of eCG in heterologous species is of fundamental interest to the study of gonadotropin structure-function relationships and the understanding of the molecular bases of the specific interactions of these hormones with their receptors. Thus, eCG is a dintinct molecule from the view points of its biological function and glycoresidue structures. The oligosaccharide at Asn 56 of the $\alpha$-subunit plays an indispensable role, whereas the carboxyl-terminal extension of the eCG $\beta$-subunit with its associated O-linked oligosaccharides is not improtant for, the in vitro LH-like activity of eCG. In contrast, both N- and O-linked oligosaccharides play important roles for FSH-like activity and increase FSH-like activity by removal of N- and O-linked oligosaccharides. Therefore, the dual LH- and FSH-like activities of eCG can be clearly separated by removal of either the N-linked oligosaccharide on the $\alpha$-subunit or CTP-associated O-linked oligosaccharides from its $\beta$-subunit. The glycoresidues seem to play crucial roles fer biological activities. The tethered-eCG was effciently secreted and showed similar LH-like activity to the dimeric eCG $\alpha$/ $\beta$ and native eCG. FSH-like activity of the tethered-eCG was also shown similarly in comparison with the native and wild type eCG $\alpha$/ $\beta$. Our data for the first time suggest that the tethered-eCG can be expressed efficiently and the produced product by the CHO-Kl cells is fully LH- and FSH-like activities in rat in vitro bioassay system. Our results also suggest that this molecular can imply particular models ot FSH-like activity not LH-like activity in the eCG. Taken together, these data indicate that the constructs of tethered molecule will be useful in the study of mutants that affect subunit association and/or secretion.

Study on the soluble exoression of recombinant human eoidermal growth factor using various fusion oartners in Escherichia coli (재조합 대장균에서 다양한 융합 파트너를 이용한 인간 상피세포성장인자의 발현 연구)

  • Kim, Byung-Lip;Baek, Jung-Eun;Kim, Chun-Sug;Lee, Hyeok-Weon;Ahn, Jung-Oh;Lee, Hong-Weon;Jung, Joon-Ki;Lee, Eun-Gyo;Kim, In-Ho
    • KSBB Journal
    • /
    • v.23 no.3
    • /
    • pp.205-212
    • /
    • 2008
  • The efficient soluble expression of human epidermal growth factor (hEGF) was achieved by using functional fusion partners in cytoplasm and periplasm of Escherichia coli (E. coli). hEGF was over-expressed in inactive inclusion body form in cytoplasm of E. coli due to improper disulfide bond formation and hydrophobic interaction, yielding about 5.9 mg/L in flask culture. Six functional fusion partners were introduced by linking to N-terminal part of hEGF gene for the high-level expression of soluble and active hEGF in cytoplasm and peri plasm region. Three fusion partners for cytoplasmic expression such as acidic tail of synuclein (ATS), thioredoxin (Trx) and lipase, and three fusion partners for periplasmic expression such as periplasmic cystein oxidoreductases (DsbA and DsbC) and maltose binding protein (MBP) were investigated. hEGF fused with ATS and DsbA showed over 90% of solubility in cytoplasm and periplasm, respectively. Especially DsbA was found to be an efficient fusion partner for soluble and high-level expression of hEGF, yielding about 18.1 mg/L and three-fold higher level compared to that of insoluble non-fusion hEGF in cytoplasm. Thus, heterologous proteins containing complex disulfide bond and many hydrophobic amino acids can effectively be produced as an active form in E. coli by introducing a suitable peptide or protein.

Biological Functions of N- and O-linked Oligosaccharides of Equine Chorionic Gonadotropin and Lutropin/Chorionicgonadotropin Receptor

  • Min, K. S.
    • Proceedings of the KSAR Conference
    • /
    • 2000.10a
    • /
    • pp.10-12
    • /
    • 2000
  • Members of the glycoprotein family, which includes CG, LH, FSH and TSH, comprise two noncovalently linked $\alpha$- and $\beta$-subunits. Equine chorionic gonadotropin (eCG), known as PMSG, has a number of interesting and unique characteristics since it appears to be a single molecule that possesses both LH- and FSH-like activities in other species than the horse. This dual activity of eCG in heterologous species is of fundamental interest to the study of the structure-function relationships of gonadotropins and their receptors. CG and LH $\beta$ genes are different in primates. In horse, however, a single gene encodes both eCG and eLH $\beta$-subunits. The subunit mRNA levels seem to be independently regulated and their imbalance may account for differences in the quantities of $\alpha$ - and $\beta$ -subunits in the placenta and pituitary. The dual activities of eCG could be separated by removal of the N-linked oligosaccharide on the $\alpha$-subunit Asn 56 or CTP-associated O-linked oligosaccharides. The tethered-eCG was. efficiently secreted and showed similar LH-like activity to the dimeric eCG. Interestingly, the FSH-like activity of the tethered-eCG was increased markedly in comparison with the native and wild type eCG. These results also suggest that this molecular can implay particular models of FSH-like activity not LH-like activity in the eCG/indicate that the constructs of tethered molecule will be useful in the study of mutants that affect subunit association and/or secretion. A single-chain analog can also be constructed to include additional hormone-specific bioactive generating potentially efficacious compounds that have only FSH-like activity. The LH/CG receptor (LH/CGR), a membrane glycoprotein that is present on testicular Leydig cells and ovarian theca, granulosa, luteal, and interstitial cells, plays a pivotal role in the regulation of gonadal development and function in males as well as in nonpregnant and pregnant females. The LH/CGR is a member of the family of G protein-coupled receptors and its structure is predicted to consist of a large extracellular domain connected to a bundle of seven membrane-spanning a-helices. The LH/CGR phosphorylation can be induced with a phorbol ester, but not with a calcium ionophore. The truncated form of LHR also was down-regulated normally in response to hCG stimulation. In contrast, the cell lines expressing LHR-t63I or LHR-628, the two phosphorylation-negative receptor mutant, showed a delay in the early phase of hCG-induced desensitization, a complete loss of PMA-induced desensitization, and an increase in the rate of hCG-induced receptor down-regulation. These results clearly show that residues 632-653 in the C-terminal tail of the LHR are involved in PMA-induced desensitization, hCG-induced desensitization, and hCG-induced down-regulation. Recently, constitutively activating mutations of the receptor have been identified that are associated with familial male-precocious puberty. Cells expressing LHR-D556Y bind hCG with normal affinity, exhibit a 25-fold increase in basal cAMP and respond to hCG with a normal increase in cAMP accumulation. This mutation enhances the internalization of the free and agonist-occupied receptors ~2- and ~17-fold, respectively. We conclude that the state of activation of the LHR can modulate its basal and/or agonist-stimulated internalization. Since the internalization of hCG is involved in the termination of hCG actions, we suggest that the lack of responsiveness detected in cells expressing LHR-L435R is due to the fast rate of internalization of the bound hCG. This statement is supported by the finding that hCG responsiveness is restored when the cells are lysed and signal transduction is measured in a subcellular fraction (membranes) that cannot internalize the bound hormone.

  • PDF

Mitigation of Calcification in Bovine Pericardial Bioprosthesis after Amino Acids Posttreatment (아미노산 후처치의 이종 심낭보철편 석회화 완화 효과)

  • 안재호
    • Journal of Chest Surgery
    • /
    • v.36 no.3
    • /
    • pp.131-135
    • /
    • 2003
  • Bovine pericardium fixed in glutaraldehyde solution (GA) has been one of the most popular surgical bioprosthesis, however, late calcific degeneration after implantation remains to be solved. To mitigate calcific degeneration, we posttreated the bovine pericardium with amino acids after GA fixation. Material and Method: 40 small pieces of bovine pericardia were fixed in 0.625% GA solution with 4 g/L $MgCl_26H_2O$as a control group (group 1). 40 pieces fixed in the same GA solution were posttreated with 2% chitosan solution (group 2) and the other 40 pieces posttreated with 8% glutamate (group 3). These were implanted into the belly of forty Fisher 344 rats subdermally and extracted at f month, 2 months, 3 months and 4 months after implantation. Result: With atomic absorption spectrophotometry we measured the deposited calcium amount and the results were as follows; 2.01 $\pm$0.13 mg/g in group 1, 2.34$\pm$0.73 mg/g in group 2, 2.49$\pm$0.15 mg/g in group 3 at 1 month after implantation, and 3.57$\pm$0.15 mg/g in group 1, 3.52$\pm$0.92 mg/g in group 2, 3.46$\pm$0.12 mg/g in group 3 at the second month. But 5.45$\pm$0.42 mg/g in group 1, 3.22 $\pm$1.31 mg/g in group 2 and 4.20$\pm$0.55 mg/g in group 3 at the 3rd month, which have statistical significance in group 2 (p<0.05). Finally at 4th month, 6.01$\pm$1.21 mg/g in group 1, 3.78$\pm$1.82 mg/g in group 2, 3.92$\pm$0.92 mg/g in group 3, which also have statistical significance (p < 0.05). Conclusion: This means posttreatment with 2% chitosan shows meaningful calcium mitigation effects after 3rd month on subcutaneously implanted bovine pericardium in the rat models but 8% glutamate shows mitigation effect after 4months in this experiment.

Substrate chain-length specificities of polyhydroxyalkanoate synthases PhaC1 and PhaC2 from Pseudomonas aeruginosa P-5 (Pseudomonas aeruginosa P-5에 존재하는 polyhydroxyalkanoate synthase PhaC1과 PhaC2의 기질특이성)

  • Woo, Sang Hee;Lee, Sun Hee;Rhee, Young Ha
    • Korean Journal of Microbiology
    • /
    • v.52 no.4
    • /
    • pp.455-462
    • /
    • 2016
  • Pseudomonas aeruginosa P-5 is an unusual organism capable of synthesizing polyhydroxyalkanoates (PHAs) consisting of 3-hydroxyvalerate (3HV) and medium-chain-length (MCL) 3-hydroxyalkanoate (3HA) monomer units when C-odd alkanoic acids are fed as the sole carbon source. Evaluation of the substrate chain-length specificity of two P. aeruginosa P-5 PHA synthases ($PhaC1_{P-5}$ and $PhaC2_{P-5}$) by heterologous expression of $PhaC1_{P-5}$ and $PhaC2_{P-5}$ genes in Pseudomonas putida GPp104 revealed that $PhaC2_{P-5}$ incorporates both 3HV and MCL 3HAs into PHA, whereas $PhaC1_{P-5}$ favors only MCL 3HAs for polymerization. In order to obtain $PhaC2_{P-5}$ mutants with altered substrate specificity, site-specific mutagenesis for $PhaC2_{P-5}$ was conducted. Amino acid substitutions of $PhaC2_{P-5}$ at two positions (Ser326Thr and Gln482Lys) were very effective for synthesizing copolymers with a higher 3HV fraction. When recombinant P. putida GPp104 harboring double mutated $phaC2_{P-5}$ gene ($phaC2_{P-5}QKST$) was grown on nonanoic acid, 2.5-fold increase of copolymer content with 3.8-fold increase of 3HV fraction was observed. The $phaC2_{P-5}QKST$-containing Ralstonia eutropha PHB-4 supplemented with valeric acid also produced copolymers consisting of 3HV and 3-hydroxyheptanoate with a high 3HV fraction. These results suggest that recombinants containing $phaC2_{P-5}QKST$ could be useful for production of new PHA copolymers with improved material properties.

Cyanobacteria and Secondary Metabolites (시아노박테리아의 이차대사물질에 대한 연구)

  • Kim, Gi-Eun;Kwon, Jong-Hee
    • KSBB Journal
    • /
    • v.22 no.5
    • /
    • pp.356-361
    • /
    • 2007
  • Cyanobacteria are a very old group of prokaryotic organisms that produce very diverse secondary metabolites, especially non-ribosomal peptide and polyketide structures. Although some cyanobacteria produce lethal toxins such as microcystins and anatoxins, some may be useful either for development into commercial drugs or as biochemical tools. Detection of unknown secondary metabolites was carried in the present study by a screening of 98 cyanobacterial strains from Cyanobiotech GmbH in order to establish a screening process, isolate pure substances and determine their bioactivities. A degenerated polymerase chain reaction technique as molecular approaches has been used for general screening of NRPS gene and PKS gene in cyanobacteria. A putative PKS gene was detected by DKF/DKR primer in 38 strains (38.8%) and PCR amplicons resulted from a presence of NRPS gene were showed by MTF2/MTR2 primer in 30 strains (30.6%), respectively. A screening of interesting strains was performed by comparing PCR screening results with HPLC analyses of extracts. HPLC analysis for a detection of natural products was performed in extracts from biomass. 5 strains were screened for further scale-up processing. 7 pure substances were isolated from the scale-up cultures and tested for bioactivities under consideration to purity, amount and molecular weight of substances. One substance isolated from CBT 635 showed cytotoxic activity. This substance may be regarded as Microcystin LR.

Histological Comparison of Vascular Grafts in a Pig to Goat Xenotransplantation Model (돼지-염소 이종이식모델에서 냉동 및 무세포화 혈관이식편의 조직학적 비교분석)

  • Yang Ji-Hyuk;Sung Ki-Ick;Kim Won-Geon
    • Journal of Chest Surgery
    • /
    • v.39 no.6 s.263
    • /
    • pp.427-433
    • /
    • 2006
  • Background: Current vascular prostheses are considered still inadequate for reconstruction of small-diameter vessels. To evaluate the potential use of xenograft vessels as small diameter arterial grafts, we implanted porcine vessels in goats. The grafts were treated with two different processes, freezing and acellularization, before implantation, and gross inspection as well as microscopic examination followed after a predetermined period. Material and Method: Bilateral porcine carotid arteries were harvested and immediately stored at $-70^{\circ}C$ within tissue preservation solution. One of them was designated as frozen xenograft vessel. The other one was put on acellularization process using NaCl-SDS solution and stored frozen until further use. Grafts were implanted in the place of carotid arteries of the same goat. The grafts have remained implanted for 1, 3, and 6 months in three animals, respectively. Periodic ultrasonographic examinations were performed during the observation period. After explantation, the grafts were analyzed grossly and histologically under light microscope. Result: All animals survived the experimental procedure without problems. Ultrasonographic examinations showed excellent patency of all the grafts during the observation period. Gross examination revealed nonthrombotic, patent lumens with smooth surfaces. Microscopic examinations of the explanted grafts showed cellular reconstruction at the 6-month stage in both grafts. Although more inflammatory responses were observed in the early phase of frozen xenografts, there was no evidence of significant rejection. Conclusion: These findings suggest that porcine xenograft vessels, regardless of pre-implantation processes of acelluarization or freezing, can be acceptably implanted in goats, although short duration of observation in a small number of animals may limit this study.

Use of Human Serum Albumin Fusion Tags for Recombinant Protein Secretory Expression in the Methylotrophic Yeast Hansenula polymorpha (메탄올 자화효모 Hansenula polymorpha에서의 재조합 단백질 분비발현을 위한 인체 혈청 알부민 융합단편의 활용)

  • Song, Ji-Hye;Hwang, Dong Hyeon;Oh, Doo-Byoung;Rhee, Sang Ki;Kwon, Ohsuk
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.1
    • /
    • pp.17-25
    • /
    • 2013
  • The thermotolerant methylotrophic yeast Hansenula polymorpha is an attractive model organism for various fundamental studies, such as the genetic control of enzymes involved in methanol metabolism, peroxisome biogenesis, nitrate assimilation, and resistance to heavy metals and oxidative stresses. In addition, H. polymorpha has been highlighted as a promising recombinant protein expression host, especially due to the availability of strong and tightly regulatable promoters. In this study, we investigated the possibility of employing human serum albumin (HSA) as the fusion tag for the secretory expression of heterologous proteins in H. polymorpha. A set of four expression cassettes, which contained the methanol oxidase (MOX) promoter, translational HSA fusion tag, and the terminator of MOX, were constructed. The expression cassettes were also designed to contain sequences for accessory elements including His8-tag, $2{\times}(Gly_4Ser_1)$ linkers, tobacco etch virus protease recognition sites (Tev), multi-cloning sites, and strep-tags. To determine the effects of the size of the HSA fusion tag on the secretory expression of the target protein, each cassette contained the HSA gene fragment truncated at a specific position based on its domain structure. By using the Green fluorescence protein gene as the reporter, the properties of each expression cassette were compared in various conditions. Our results suggest that the translational HSA fusion tag is an efficient tool for the secretory expression of recombinant proteins in H. polymorpha.

Biological Functions of N- and O-linked Oligosaccharides of Equine Chorionic Gonadotropin and Lutropin/Chorionic Gonadotropin Receptor

  • Min, K.S.
    • Korean Journal of Animal Reproduction
    • /
    • v.24 no.4
    • /
    • pp.357-364
    • /
    • 2000
  • Members of the glycoprotein family, which includes CG, LH, FSH and TSH, comprise two noncovalently linked $\alpha$- and $\beta$-subunits. Equine chorionic gonadotropin (eCG), known as PMSG, has a number of interesting and unique characteristics since it appears to be a single molecule that possesses both LH- and FSH-like activities in other species than the horse. This dual activity of eCG in heterologous species is of fundamental interest to the study of the structure-function relationships of gonadotropins and their receptors. CG and LH $\beta$ genes are different in primates. In horse, however, a single gene encodes both eCG and eLH $\beta$ -subunits. The subunit mRNA levels seem to be independently regulated and their imbalance may account for differences in the quantities of $\alpha$ - and $\beta$-subunits in the placenta and pituitary. The dual activities of eCG could be separated by removal of the N-linked oligosaccharide on the $\alpha$-subunit Asn 56 or CTP-associated O-linked oligosaccharides. The tethered-eCG was efficiently secreted and showed similar LH-like activity to the dimeric eCG. Interestingly, the FSH-like activity of the tethered-eCG was increased markedly in comparison with the native and wild type eCG. These results also suggest that this molecular can implay particular models of FSH-like activity not LH-like activity in the eCG/indicate that the constructs of tethered molecule will be useful in the study of mutants that affect subunit association and/or secretion. A single-chain analog can also be constructed to include additional hormone-specific bioactive generating potentially efficacious compounds that have only FSH-like activity. The LH/CG receptor (LH/CGR), a membrane glycoprotein that is present on testicular Leydig cells and ovarian theca, granulosa, luteal, and interstitial cells, plays a pivotal role in the regulation of gonadal development and function in males as well as in nonpregnant and pregnant females. The LH/CGR is a member of the family of G protein-coupled receptors and its structure is predicted to of a large extracellular domain connected to a bundle of seven membrane-spanning a-helices. The LH/CGR phosphorylation can be induced with a phorbol ester, but not with a calcium ionophore. The truncated form of LHR also was down-regulated normally in response to hCG stimulation. In contrast, the cell lines expressing LHR-t631 or LHR-628, the two phosphorylation-negative receptor mutant, showed a delay in the early phase of hCG-induced desensitization, a complete loss of PMA-induced desensitization, and an increase in the rate of hCG-induced receptor down-regulation. These results clearly show that residues 632~653 in the C-terminal tail of the LHR are involved in PMA-induced desensitization, hCG-induced desensitization, and hCG-induced down-regulation. Recently, constitutively activating mutations of the receptor have been identified that are associated with familial male-precocious puberty. Cells expressing LHR-D556Y bind hCG with normal affinity, exhibit a 25-fold increase in basal cAMP and respond to hCG with a normal increase in cAMP accumulation. This mutation enhances the internalization of the free and agoinst-occupied receptors ~2- and ~17- fold, respectively. We conclude that the state of activation of the LHR can modulate its basal and/or agonist-stimulated internalization. Since the internalization of hCG is involved in the termination of hCG actions, we suggest that the lack of responsiveness detected in cells expressing LHR-L435R is due to the fast rate of internalization of the bound hCG. This statement is supported by the finding that hCG responsiveness is restored when the cells are lysed and signal transduction is measured in a subcellular fraction (membranes) that cannot internalize the bound hormone.

  • PDF

Introduction and Expression of PAP gene using Agrobacterium in Scrophularia buergeriana Miquel (Agrobacterium을 이용한 PAP 유전자의 현삼으로 도입 및 형질발현)

  • Yu, Chang-Yeon;Seong, Eun-Soo;Lim, Jung-Dae;Huang, Shan-Ai;Chae, Young-Am
    • Korean Journal of Medicinal Crop Science
    • /
    • v.9 no.2
    • /
    • pp.156-165
    • /
    • 2001
  • Exogeneous application of pokeweed antiviral protein (PAP), a ribosomal-inacivating protein in the cell wall of Phytolacca americana (pokeweed) protects heterologous plants from viral and fungal infection. A cDNA clone of PAP introduced into Scrophularia buergeriana Miquel by thransformation with Agrobacterium tumefaciences. For plant transformation, explants were precultured on shoot induction medium without kanamycin for 2-5 day, and then they were cocultured with Agrobacterium for 10 minutes. The explants were placed on co culture medium in dark condition, $28^{\circ}C$ for 2days. After explants were washed in MS liquid medium, they were transferred into selection medium including kanamycin 50mg/L (MS salts+1mg/ l BAP+2mg/ l TDZ+0,2mg/ l NAA+MS vitamin+3% sucrose+0.8% agar, pH5.8). From PCR analysis, NPT II band was confirmed in transgenic plant genome and showed resistance against fungi in antifungal activity test. Micro assay to which protein extracted from transgenic line were added, revealed hyphae growth inhibition and no spore germination at high concentration. The characteristics of inhibited hyphae was represented transparent and thin. Expression of PAP in transgenic plants offers the possibility of developing resistance to viral and fungal infection.

  • PDF