• Title/Summary/Keyword: Heterologous

Search Result 469, Processing Time 0.022 seconds

Increase of $CoQ_{10}$ Production Level by the Coexpression of Decaprenyl Diphosphate Synthase and 1-Deoxy-D-xylulose 5-Phosphate Synthase Isolated from Rhizobium radiobacter ATCC 4718 in Recombinant Escherichia coli

  • Seo, Myung-Ji;Im, Eun-Mi;Nam, Jung-Yeon;Kim, Soon-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1045-1048
    • /
    • 2007
  • Two genes, dps encoding decaprenyl diphosphate synthase and dxs encoding 1-deoxy-D-xylulose 5-phosphate synthase, were isolated from Rhizobium radiobacter ATCC 4718. DNA sequencing analysis of the dps and dxs genes revealed an open reading frame of 1,077 bp and 1,920 bp, respectively. The heterologous expression in Escherichia coli BL21(DE3) was carried out in order to identify their functions. Recombinant E. coli BL21(DE3) harboring the dps gene produced $CoQ_{10}$ as well as $CoQ_8$ and $CoQ_9$, whereas E. coli harboring only the dxs gene produced more $CoQ_8$ compared with the wild-type E. coli. Additionally, the coexpression of dps and dxs genes in E. coli was carried out. The recombinant E. coli harboring only the dps gene produced $0.21{\pm}0.04\;mg/l$ of $CoQ_{10}$, whereas the coexpressed E. coli with dps and dxs genes produced $0.37{\pm}0.07\;mg/l$ of $CoQ_{10}$. HPLC analysis also showed that the $CoQ_{10}$ fraction (100% of the total CoQs distribution) was increased from $15.86{\pm}0.66%$ (only dps) to $29.78{\pm}1.80%$ (dps and dxs).

Characterization of a Recombinant Thermostable Arylsulfatase from Deep-Sea Bacterium Flammeovirga pacifica

  • Gao, Chao;Jin, Min;Yi, Zhiwei;Zeng, Runying
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.11
    • /
    • pp.1894-1901
    • /
    • 2015
  • A novel sulfatase gene, ary423 (1,536 bp ORF), encoding a protein of 511 amino acids with a calculated molecular mass of 56 kDa, was identified from Flammeovirga pacifica, which was isolated from deep-sea sediments of west Pacific Ocean. Amino acid sequence analysis revealed that Ary423 possessed a conserved C-X-A-X-R motif, which was recognized as the sulfatase signature. Phylogenetic analysis suggested that Ary423 belonged to arylsulfatases. After heterologous expression in Escherichia coli cells, the recombinant Ary423 was purified with a Ni+ affinity column, and was shown to be highly active at a broad range of temperatures from 30° to 70℃, with maximum activity at 40℃. Furthermore, recombinant Ary423 retained more than 70% and 40% of its maximum activity after 12 h of incubation at 50℃ and 60℃, respectively, exhibiting good thermostability at high temperatures. The optimal pH for Ary423 was determined to be 8.0 and the activity of Ary423 could be slightly enhanced by Mg2+. The recombinant enzyme could hydrolyze sulfate ester bonds in p-nitrophenyl sulfate (NPS) and Asparagus crude polysaccharides with a specific activity of 64.8 U/mg and 25.4 U/mg, respectively. These favorable properties could make Ary423 attractive for application in the desulfating process of agar production.

Bacterial Cell Surface Display of a Multifunctional Cellulolytic Enzyme Screened from a Bovine Rumen Metagenomic Resource

  • Ko, Kyong-Cheol;Lee, Binna;Cheong, Dae-Eun;Han, Yunjon;Choi, Jong Hyun;Song, Jae Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.11
    • /
    • pp.1835-1841
    • /
    • 2015
  • A cell surface display system for heterologous expression of the multifunctional cellulase, CelEx-BR12, in Escherichia coli was developed using truncated E. coli outer membrane protein C (OmpC) as an anchor motif. Cell surface expression of CelEx-BR12 cellulase in E. coli harboring OmpC-fused CelEx-BR12, designated MC4100 (pTOCBR12), was confirmed by fluorescence-activated cell sorting and analysis of outer membrane fractions by western blotting, which verified the expected molecular mass of OmpC-fused CelEx-BR12 (~72 kDa). Functional evidence for exocellulase activity was provided by enzymatic assays of whole cells and outer membrane protein fractions from E. coli MC4100 (pTOCBR12). The stability of E. coli MC4100 (pTOCBR12) cellulase activity was tested by carrying out repeated reaction cycles, which demonstrated the reusability of recombinant cells. Finally, we showed that recombinant E. coli cells displaying the CelEx-BR12 enzyme on the cell surface were capable of growth using carboxymethyl cellulose as the sole carbon source.

Heterologous Production of Streptokinase in Secretory Form in Streptomyces lividans and in Nonsecretory Form in Escherichia coli

  • Kim,, Mi-Ran;Choeng, Yong-Hoon;Chi, Won-Jae;Kang, Dae-Kyung;Hong, Soon-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.132-137
    • /
    • 2010
  • The skc gene encoding streptokinase (SK) with a molecular mass of approximately 47.4 kDa was cloned from Streptococcus equisimilis ATCC 9542 and heterologously overexpressed in Streptomyces lividans TK24 and E. coli using various strong promoters. When the promoter for sprT [Streptomyces griseus trypsin (SGT)] was used in the host S. lividans TK24, a 47.4-kDa protein was detected along with a smaller hydrolyzed protein (44 kDa), suggesting that posttranslational hydrolysis had occurred as has been reported in other expression systems. The casein/plasminogen plate assay revealed that the plasmid construct containing the SGT signal peptide was superior to that containing the SK signal peptide in terms of SK production. Maximal production of SK was calculated to be about 0.25 unit/ml of culture broth, a value that was five times higher than that obtained with other expression systems using ermE and tipA promoters in the same host. When the skc gene was expressed in E. coli BL21(${\Delta}DE3$)pLys under the control of the T7 promoter, a relatively large amount of SK was expressed in soluble form without hydrolysis. SK activity in E. coli/pET28a-$T7_pSK_m$ was more than 2 units/ml of culture broth, even though about half of the expressed protein formed an inactive inclusion body.

Engineering the Cellular Protein Secretory Pathway for Enhancement of Recombinant Tissue Plasminogen Activator Expression in Chinese Hamster Ovary Cells: Effects of CERT and XBP1s Genes

  • Rahimpour, Azam;Vaziri, Behrouz;Moazzami, Reza;Nematollahi, Leila;Barkhordari, Farzaneh;Kokabee, Leila;Adeli, Ahmad;Mahboudi, Fereidoun
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.8
    • /
    • pp.1116-1122
    • /
    • 2013
  • Cell line development is the most critical and also the most time-consuming step in the production of recombinant therapeutic proteins. In this regard, a variety of vector and cell engineering strategies have been developed for generating high-producing mammalian cells; however, the cell line engineering approach seems to show various results on different recombinant protein producer cells. In order to improve the secretory capacity of a recombinant tissue plasminogen activator (t-PA)-producing Chinese hamster ovary (CHO) cell line, we developed cell line engineering approaches based on the ceramide transfer protein (CERT) and X-box binding protein 1 (XBP1) genes. For this purpose, CERT S132A, a mutant form of CERT that is resistant to phosphorylation, and XBP1s were overexpressed in a recombinant t-PA-producing CHO cell line. Overexpression of CERT S132A increased the specific productivity of t-PA-producing CHO cells up to 35%. In contrast, the heterologous expression of XBP1s did not affect the t-PA expression rate. Our results suggest that CERT-S132A-based secretion engineering could be an effective strategy for enhancing recombinant t-PA production in CHO cells.

Secretory Expression of Human $\alpha_{s1}$-Casein in Saccharomyces cerevisiae

  • Kim, Yoo-Kyeong;Yu, Dae-Yeul;Kang, Hyun-Ah;Yoon, Sun;Chung, Bong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.2
    • /
    • pp.196-200
    • /
    • 1999
  • A recombinant human $\alpha_{s1}$-casein was expressed as a secretory product in the yeast Saccharomyces cerevisiae. Three different leader sequences derived from the mating factor $\alpha$l (MF$\alpha$l), inulinase, and human $\alpha_{s1}$-casein were used to direct the secretion of human $\alpha_{s1}$-casein into the extracellular medium. Among the three leader sequences tested, the native leader sequence of human $\alpha_{s1}$-casein was found to be the most efficient in the secretory expression of human $\alpha_{s1}$-casein, which implies that the native leader sequence of human $\alpha_{s1}$-casein might be used very efficiently for the secretory production of other heterologous proteins in yeast. The recombinant human $\alpha_{s1}$-casein was proteolytically cleaved as the culture proceeded. Therefore, an attempt was made to produce human $\alpha_{s1}$-casein using a S. cerevisiae mutant in which the YAP3 gene encoding yeast aspartic protease 3 (YAP3) was disrupted. After 72 h of culture, most of the human $\alpha_{s1}$-casein secreted by the wild type was cleaved, whereas more than 70% of the human $\alpha_{s1}$-casein secreted by yap3-disruptant remained intact. The results suggest that YAP3 might be involved in the internal cleavage of human $\alpha_{s1}$-casein expressed in yeast

  • PDF

Production of Coenzyme $Q_{10}$ by Recombinant E. coli Harboring the Decaprenyl Diphosphate Synthase Gene from Sinorhizobium meliloti

  • Seo Myung-Ji;Im Eun-Mi;Hur Jin-Haeng;Nam Jung-Yeon;Hyun Chang-Gu;Pyun Yu-Ryang;Kim Soon-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.933-938
    • /
    • 2006
  • Decaprenyl diphosphate synthase (DPS) is the key enzyme for the production of coenzyme $Q_{10}$ ($CoQ_{10}$). A dps gene from Sinorhizobium meliioti KCCM 11232 (IFO 14782) was isolated by PCR and then cloned in Escherichia coli. DNA sequencing analysis revealed an open reading frame of 1,017 bp encoding a 338-amino-acid protein. The protein was identical at the 98% level to the putative octaprenyl diphosphate synthase (IspB) of S. meliloti 1021. The deduced amino acid sequence included the DDxxD domains conserved in the majority of the prenyl diphosphate synthases. Heterologous expression in E. coli BL21 (DE3) was carried out, and the $CoQ_{10}$ produced was then analyzed by HPLC. E. coli BL21 (DE3) harboring the dps gene from S. melioti produced CoQ$_{10}$ in addition to endogenous coenzyme Q$_8$ (CoQ$_8$), whereas wild-type E. coli BL21 (DE3) host did not have the ability of producing CoQ$_{10}$. The results suggest that the putative dps from S. meliloti KCTC 2353 encoded the DPS.

Biosynthesis of Polymyxins B, E, and P Using Genetically Engineered Polymyxin Synthetases in the Surrogate Host Bacillus subtilis

  • Kim, Se-Yu;Park, Soo-Young;Choi, Soo-Keun;Park, Seung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.7
    • /
    • pp.1015-1025
    • /
    • 2015
  • The development of diverse polymyxin derivatives is needed to solve the toxicity and resistance problems of polymyxins. However, no platform has generated polymyxin derivatives by genetically engineering a polymyxin synthetase, which is a nonribosomal peptide synthetase. In this study, we present a two-step approach for the construction of engineered polymyxin synthetases by substituting the adenylation (A) domains of polymyxin A synthetase, which is encoded by the pmxABCDE gene cluster of Paenibacillus polymyxa E681. First, the seventh L-threonine-specific A-domain region in pmxA was substituted with the L-leucine-specific A-domain region obtained from P. polymyxa ATCC21830 to make polymyxin E synthetase, and then the sixth D-leucine-specific A-domain region (A6-D-Leu-domain) was substituted with the D-phenylalanine-specific A-domain region (A6-D-Phe-domain) obtained from P. polymyxa F4 to make polymyxin B synthetase. This step was performed in Escherichia coli on a pmxA-containing fosmid, using the lambda Red recombination system and the sacB gene as a counter-selectable marker. Next, the modified pmxA gene was fused to pmxBCDE on the chromosome of Bacillus subtilis BSK4dA, and the resulting recombinant strains BSK4-PB and BSK4-PE were confirmed to produce polymyxins B and E, respectively. We also succeeded in constructing the B. subtilis BSK4-PP strain, which produces polymyxin P, by singly substituting the A6-D-Leu-domain with the A6-D-Phe-domain. This is the first report in which polymyxin derivatives were generated by genetically engineering polymyxin synthetases. The two recombinant B. subtilis strains will be useful for improving the commercial production of polymyxins B and E, and they will facilitate the generation of novel polymyxin derivatives.

Reduction of Acetate and Lactate Contributed to Enhancement of a Recombinant Protein Production in E. coli BL21

  • Kim, Tae-Su;Jung, Hyung-Moo;Kim, Sang-Yong;Zhang, Liaoyuan;Li, Jinglin;Sigdel, Sujan;Park, Ji-Hyun;Haw, Jung-Rim;Lee, Jung-Kul
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.7
    • /
    • pp.1093-1100
    • /
    • 2015
  • Acetate and lactate in growth media are detrimental to the production of Thermus maltogenic amylase (ThMA), a heterologous protein, as well as to the growth of recombinant Escherichia coli. Only 50 mM of acetate or 10 mM of lactate reduced 90% of specific ThMA activity. In this study, mutant E. coli strains blocked in the ackA-pta or ackA-pta and ldh pathways were created, characterized, and assessed for their culture performace in 300 L-scale fermentation. The ackApta and ldh double-mutant strain formed significantly less lactate and acetate, and produced a concomitant increase in the excretion of pyruvate (17.8 mM) under anaerobic conditions. The ackA-pta mutant strain accumulated significant acetate but had an approximately 2-fold increase in the formation of lactate. The ackA-pta and ldh double-mutant strain had superior overall performance in large-scale culture under suboptimal conditions, giving 67% higher cell density and 66% higher ThMA activity compared with those of the control strain. The doublemutant strain also achieved a 179% improvement in volumetric ThMA production.

Characterization of a 27 kDa Fibrinolytic Enzyme from Bacillus amyloliquefaciens CH51 Isolated from Cheonggukjang

  • Kim, Gyoung-Min;Lee, Ae-Ran;Lee, Kang-Wook;Park, Ae-Yong;Chun, Ji-Yeon;Cha, Jae-Ho;Song, Young-Sun;Kim, Jeong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.9
    • /
    • pp.997-1004
    • /
    • 2009
  • Bacillus amyloliquefancies CH51 isolated from cheonggukjang, a traditional Korean fermented soy food, has strong fibrinolytic activity and produces several fibrinolytic enzymes. Among four different growth media, tryptic soy broth was the best in terms of supporting cell growth and fibrinolytic activity of this strain. A protein with fibrinolytic activity was partially purified from the culture supernatant by CM-Sephadex and Phenyl Sepharose column chromatographies. Tandem mass spectrometric analysis showed that this protein is a homolog of AprE from B. subtilis and it was accordingly named AprE51. The optimum pH and temperature for partially purified AprE51 activity were 6.0 and $45^{\circ}C$, respectively. A gene encoding AprE51, aprE51, was cloned from B. amyloliquefaciens CH51 genomic DNA. The aprE51 gene was overexpressed in heterologous B. subtilis strains deficient in fibrinolytic activity using an E. coli-Bacillus shuttle vector, pHY300PLK.