• Title/Summary/Keyword: Heterologous

Search Result 466, Processing Time 0.021 seconds

Identification of 1,3,6,8-Tetrahydroxynaphthalene Synthase (ThnA) from Nocardia sp. CS682

  • Purna Bahadur Poudel;Rubin Thapa Magar;Adzemye Fovennso Bridget;Jae Kyung Sohng
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.7
    • /
    • pp.949-954
    • /
    • 2023
  • Type III polyketide synthase (PKS) found in bacteria is known as 1,3,6,8-tetrahydroxynaphthalene synthase (THNS). Microbial type III PKSs synthesize various compounds that possess crucial biological functions and significant pharmaceutical activities. Based on our sequence analysis, we have identified a putative type III polyketide synthase from Nocardia sp. CS682 was named as ThnA. The role of ThnA, in Nocardia sp. CS682 during the biosynthesis of 1,3,6,8 tetrahydroxynaphthalene(THN), which is the key intermediate of 1-(α-L-(2-O-methyl)-6-deoxymannopyranosyloxy)-3,6,8-trimethoxynaphthalene (IBR-3) was characterized. ThnA utilized five molecules of malonyl-CoA as a starter substrate to generate the polyketide 1,3,6,8-tetrahydroxynaphthalene, which could spontaneously be oxidized to the red flaviolin compound 2,5,7-trihydroxy-1,4-naphthoquinone. The amino acid sequence alignment of ThnA revealed similarities with a previously identified type III PKS and identified Cys138, Phe188, His270, and Asn303 as four highly conserved active site amino acid residues, as found in other known polyketide synthases. In this study, we report the heterologous expression of the type III polyketide synthase thnA in S. lividans TK24 and the identification of THN production in a mutant strain. We also compared the transcription level of thnA in S. lividans TK24 and S. lividans pIBR25-thnA and found that thnA was only transcribed in the mutant.

Humoral immune response to SARS-CoV-2 mRNA vaccines is associated with choice of vaccine and systemic adverse reactions

  • Hanna Klingel;Alexander Kruttgen;Matthias Imohl;Michael Kleines
    • Clinical and Experimental Vaccine Research
    • /
    • v.12 no.1
    • /
    • pp.60-69
    • /
    • 2023
  • Purpose: Although the fast development of safe and effective messenger RNA (mRNA) vaccines against severe acute respiratory syndrome coronavirus 2 has been a success, waning humoral immunity has led to the recommendation of booster immunization. However, knowledge of the humoral immune response to different booster strategies and the association with adverse reactions is limited. Materials and Methods: We investigated adverse reactions and anti-spike protein immunoglobulin G (IgG) concentrations among health care workers who received primary immunization with mRNA-1273 and booster immunization with mRNA-1273 or BNT162b2. Results: Adverse reactions were reported by 85.1% after the first dose, 94.7% after the second dose, 87.5% after a third dose of BNT162b2, and 86.0% after a third dose of mRNA-1273. They lasted for a median of 1.8, 2.0, 2.5, and 1.8 days, respectively; 6.4%, 43.6%, and 21.0% of the participants were unable to work after the first, second, and third vaccination, respectively, which should be considered when scheduling vaccinations among essential workers. Booster immunization induced a 13.75-fold (interquartile range, 9.30-24.47) increase of anti-spike protein IgG concentrations with significantly higher concentrations after homologous compared to heterologous vaccination. We found an association between fever, chills, and arthralgia after the second vaccination and anti-spike protein IgG concentrations indicating a linkage between adverse reactions, inflammation, and humoral immune response. Conclusion: Further investigations should focus on the possible advantages of homologous and heterologous booster vaccinations and their capability of stimulating memory B-cells. Additionally, understanding inflammatory processes induced by mRNA vaccines might help to improve reactogenicity while maintaining immunogenicity and efficacy.

Adjuvanticity of Processed Aloe vera gel for Influenza Vaccination in Mice

  • Eun-Jung Song;Erica Espano;Jeong-Hyun Nam;Jiyeon Kim;Kyu-Suk Shim;Eunju Shin;Young In Park;Chong-Kil Lee;Jeong-Ki Kim
    • IMMUNE NETWORK
    • /
    • v.20 no.4
    • /
    • pp.31.1-31.14
    • /
    • 2020
  • The effectiveness of current influenza vaccines is considered suboptimal, and 1 way to improve the vaccines is using adjuvants. However, the current pool of adjuvants used in influenza vaccination is limited due to safety concerns. Aloe vera, or aloe, has been shown to have immunomodulatory functions and to be safe for oral intake. In this study, we explored the potential of orally administered processed Aloe vera gel (PAG) as an adjuvant for influenza vaccines in C57BL/6 mice. We first evaluated its adjuvanticity with a split-type pandemic H1N1 (pH1N1) Ag by subjecting the mice to lethal homologous influenza challenge. Oral PAG administration with the pH1N1 Ag increased survival rates in mice to levels similar to those of alum and MF59, which are currently used as adjuvants in influenza vaccine formulations. Similarly, oral PAG administration improved the survival of mice immunized with a commercial trivalent influenza vaccine against lethal homologous and heterologous virus challenge. PAG also increased hemagglutination inhibition and virus neutralization Ab titers against homologous and heterologous influenza strains following immunization with the split-type pH1N1 Ag or the commercial trivalent vaccine. Therefore, this study demonstrates that PAG may potentially be used as an adjuvant for influenza vaccines.

Stable Expression and Efficient Secretion of hSCF and hINFγ Protein using Binary Vectors in Chlorella vulgaris (클로렐라에서 바이너리 벡터를 이용한 hSCF와 hINFγ 단백질의 안정적인 발현과 효율적인 분비)

  • Yu Jeong Jeong;Hee Gyung Min;Won Young Lee;Sung Chun Kim
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.45-54
    • /
    • 2024
  • Microalgae have great potential in the biomedical and pharmaceutical industries as a new type of bioreactor that can produce proteins for specific purposes, including recombinant proteins, pharmaceuticals, and industrial enzymes. Despite the production advantages and importance of microalgae-based expression systems, studies on secretion efficiency are limited. In this study, for stable expression and efficient secretion of the heterologous protein (human SCF and human INFγ) in Chlorella vulgaris, we constructed SP:hSCF:His and SP:hINFγ:His plant binary vectors using the signal peptide (SP) of Chlamydomonas reinhardtii, and we obtained stable transformants through the effective agrobacterium-mediated transformation of these vectors. Transformants with accurately inserted hSCF and hINFγ demonstrated stably increased mRNA and protein expression using RT-PCR and western blotting under the same culture conditions. Following the analysis of the proteins secreted into the culture medium using ELISA, it was confirmed that hINFγ was effectively produced in the transformed C. vulgaris culture medium. The overall findings indicate that the combination of heterologous protein and SP may be crucial for ensuring the expression and secretion of recombinant proteins in Chlorella culture systems.

Manipulating Isoflavone Levels in Plants

  • Jung Woo-Suk;Chung Ill-Min;Heo Hwa-Young
    • Journal of Plant Biotechnology
    • /
    • v.5 no.3
    • /
    • pp.149-155
    • /
    • 2003
  • Metabolic engineering for production of isoflavones in nonlegume plants could distribute the health benefits of these phytoestrogens in more widely-consumed grains. Series of investigation to check the ability of the heterologous isoflavone synthase enzyme to interact with the endogenous phenylpropanoid pathway have been conducted. Overall, results provide possibility of production of isoflavonoids in several plant tissue systems including soybean and nonlegumes. In tissue that undergoes naturally enhanced synthesis of anthocyanins, genistein production was enhanced. In a monocot cell system, introduced expression of a transcription factor regulating genes of the anthocyanin pathway was effective in conferring the ability to produce genistein in the presence of the isoflavone synthase gene. However, in this case the intermediate accumulated to high levels indicating an inefficiency in its conversion. Introduction of a third gene, chalcone reductase, provided the ability to synthesize an additional substrate of isoflavone synthase resulting in production of the isoflavone daidzein. These research efforts provide insight into requirements for metabolic engineering for isoflavone production in nonlegume dicot and monocot tissues.

Recent Advances in Biotechnology of Rumen Bacteria - Review -

  • Forsberg, C.W.;Egbosimba, E.E.;MacLellan, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.1
    • /
    • pp.93-103
    • /
    • 1999
  • Recent advances in the biotechnology of ruminal bacteria have been made in the characterization of enzymes involved in plant cell wall digestion, the exploration of mechanisms of gene transfer in ruminal bacteria, and the development of vectors. These studies have culminated in the introduction and expression of heterologous glucanase and xylanase genes and a fluoroacetate dehalogenase gene in ruminal bacteria. These recent studies show the strategy of gene and vector construction necessary for the production of genetically engineered bacteria for introduction into ruminants. Molecular research on proteolytic turnover of protein in the rumen is in its infancy, but a novel protein high in essential amino acids designed for intracellular expression in ruminal organisms provides an interesting approach for improving the amino acid profile of ruminal organisms.

Activation of Cryptic hop Genes from Streptomyces peucetius ATCC 27952 Involved in Hopanoid Biosynthesis

  • Ghimire, Gopal Prasad;Koirala, Niranjan;Sohng, Jae Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.5
    • /
    • pp.658-661
    • /
    • 2015
  • Genes encoding enzymes with sequence similarity to hopanoids biosynthetic enzymes of other organisms were cloned from the hopanoid (hop) gene cluster of Streptomyces peucetius ATCC 27952 and transformed into Streptomyces venezuelae YJ028. The cloned fragments contained four genes, all transcribed in one direction. These genes encode polypeptides that resemble polyprenyl diphosphate synthase (hopD), squalene-phytoene synthases (hopAB), and squalene-hopene cyclase (hopE). These enzymes are sufficient for the formation of the pentacyclic triterpenoid lipid, hopene. The formation of hopene was verified by gas chromatography/mass spectrometry.

Multiple Regulation of Roundabout (Robo) Phosphorylation in a Heterologous Cell System

  • Park, Hwan-Tae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.2
    • /
    • pp.111-115
    • /
    • 2004
  • Roundabout (Robo) is the transmembrane receptor for slit, the neuronal guidance molecule. In this study, the tyrosine phosphorylation of Robo was observed in Robo-transfected human embryonic kidney cells and developing rat brains, and found to be increased by the treatment with protein kinase A activator, forskolin. In contrast, protein kinase C activation by phorbol-12-myristate-13-acetate decreased the phosphorylation of Robo. Intracellular calcium was required for the tyrosine phosphorylation. Furthermore, the transfection of an Eph receptor tyrosine kinase dramatically enhanced the tyrosine phosphorylation. These findings indicate that the tyrosine phosphorylation of Robo is regulated by multiple mechanisms, and that Eph receptor kinases may play a role in the regulation of tyrosine phosphorylation of Robo in the rat brain.

Study on the variation of cellular physiology of Escherichia coli during high cell density cultivation using 2-dimensional gel electrophoresis

  • Yun, Sang-Seon;Lee, Sang-Yeop
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.219-222
    • /
    • 2000
  • Physiological changes of Escherichia coli during the fed-batch fermentation process were characterized in this study. Overall cellular protein samples prepared at the different stage of fermentation were separated by 2-dimensional gel electrophoresis (2-DE), and differently expressed 15 proteins, Phosphotransferase enzyme I, GroEL, Trigger factor, ${\beta}$ subunit of ATP synthase, Transcriptional regulator KDGR, Phosphoglycerate mutase 1, Inorganic pyrophosphatase, Serine Hydroxymethyl-transferase, ${\alpha}$ subunit of RNA polymerase, Elongation factor Tu, Elongation factor Ts, Tyrosine-tRNA ligase, DnaK suppressor protein, Transcriptional elongation factor, 30S ribosomal protein S6 were identified using matrix-assisted laser desorption / ionization time-of-flight mass spectrometry (MALDI-TOF MS). When bacterial cells grow to high cell density, and IPTG-inducible heterologous protein is produced, expression level of overall cellular proteins was decreased. According to their functions in the cell, identified proteins were classified into three groups, proteins involved in transport process, small-molecule metabolism, and synthesis and modification of macromolecules.

  • PDF

Biocatalytic production of chiral epoxide: Epoxide hydrolase-catalyzed enantioselective resolution

  • Lee, Eun-Yeol
    • Proceedings of the Korean Society of Life Science Conference
    • /
    • 2001.11a
    • /
    • pp.21-28
    • /
    • 2001
  • A newly isolated Aspergillus niger possessing the novel epoxide hydrolase(EHase) activity was investigated for the enantioselective hydrolysis of racemic aromatic epoxides. The gene encoding EHase was cloned by RT-PCR, and molecular characteristics of the EHase gene were compared with other microbial EHases. The cloned gene encodes 398 amino acids with a deduced molecular mass of 44.5 kDa and pI of 4.83, and sequence homology with other microbial EHase was low. Functional recombinant EHase could be obtained by heterologous expressions in E. coli. Enantioselectivity of recombinant EHase was tested for valuable aromatic epoxide intermediates. Reaction conditions of EHase-catalyzed asymmetric resolution were optimized for the production of chiral styrene oxide.

  • PDF