• Title/Summary/Keyword: Heterogeneous traffic

Search Result 162, Processing Time 0.025 seconds

Multi-class Variable Demand Network Equilibrium (다계층 가변수요 교통망 균형)

  • Kim, Byung-Kwan;Lim, Yong-Taek;Lim, Kang-Won;Lee, Young-Ihn
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.3
    • /
    • pp.155-167
    • /
    • 2008
  • This paper studies a multiple user class variable demand user equilibrium and system optimal condition, and then establishes solution algorithms for them. The traffic network equilibrium is accomplished with basis on following assumptions. For considering heterogeneous road user, several user classes have discrete set of VOTs and the travel demand of each user classes varies according to generalized travel cost. this paper specifically investigates following question on multi-class variable demand: Are user equilibrium flows pattern dependent on the unit (time or money) perceived by road user classes? What is system optimal condition according to the unit used in measuring the travel cost or disutility? Finally, using this network equilibrium condition, The traffic assignment algorithm of each equilibrium condition are established.

CDASA-CSMA/CA: Contention Differentiated Adaptive Slot Allocation CSMA-CA for Heterogeneous Data in Wireless Body Area Networks

  • Ullah, Fasee;Abdullah, Abdul Hanan;Abdul-Salaam, Gaddafi;Arshad, Marina Md;Masud, Farhan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.5835-5854
    • /
    • 2017
  • The implementation of IEEE 802.15.6 in Wireless Body Area Network (WBAN) is contention based. Meanwhile, IEEE 802.15.4 MAC provides limited 16 channels in the Superframe structure, making it unfit for N heterogeneous nature of patient's data. Also, the Beacon-enabled Carrier-Sense Multiple Access/Collision-Avoidance (CSMA/CA) scheduling access scheme in WBAN, allocates Contention-free Period (CAP) channels to emergency and non-emergency Biomedical Sensors (BMSs) using contention mechanism, increasing repetition in rounds. This reduces performance of the MAC protocol causing higher data collisions and delay, low data reliability, BMSs packet retransmissions and increased energy consumption. Moreover, it has no traffic differentiation method. This paper proposes a Low-delay Traffic-Aware Medium Access Control (LTA-MAC) protocol to provide sufficient channels with a higher bandwidth, and allocates them individually to non-emergency and emergency data. Also, a Contention Differentiated Adaptive Slot Allocation CSMA-CA (CDASA-CSMA/CA) for scheduling access scheme is proposed to reduce repetition in rounds, and assists in channels allocation to BMSs. Furthermore, an On-demand (OD) slot in the LTA-MAC to resolve the patient's data drops in the CSMA/CA scheme due to exceeding of threshold values in contentions is introduced. Simulation results demonstrate advantages of the proposed schemes over the IEEE 802.15.4 MAC and CSMA/CA scheme in terms of success rate, packet delivery delay, and energy consumption.

Efficient Resource Allocation Technique for LTE-Advanced based Interference Avoidance of Heterogeneous Network (LTE-Advanced 기반 이기종 네트워크 시스템의 간섭회피를 위한 효율적인 자원할당 기법)

  • Jang, Sung-Won;Seong, Hyeon-Kyeong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.17 no.1
    • /
    • pp.46-52
    • /
    • 2016
  • LTE-Advanced system consisting of the number of cells in the cellular environment because it is built to allow efficient use of limited frequency resources of adjacent cell interference avoidance should be considered. Transition services in accordance with the development of the mobile communication technology, wireless multimedia content from voice-centric mobile communications services and causing a lot of mobile data traffic, such as smart phones and tablet terminals spread of a data-driven surge in mobile data traffic base stations in urban areas by increasing became a reality that can not be prevented. In this paper, we propose a new Hybrid resource allocation technique for improving the performance of the cell boundary and analyzed the performance of the proposed new techniques to perform the simulation using LTE-Advanced system level simulator based on 19cell of cellular system model.

Tactical Service Mesh for Intelligent Traffic QoS Coordination over Future Tactical Network (미래 전술망의 지능적 트래픽 QoS 조율을 위한 전술 서비스 메쉬)

  • Kang, Moonjoong;Shin, Jun-Sik;Park, Juman;Park, Chan Yi;Kim, JongWon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.369-381
    • /
    • 2019
  • As tactical networks are gradually shifting toward IP-based flexible operation for diversified battlefield services, QoS(Quality-of-Service) coordination for service differentiation becomes essential to overcome the heterogeneous and scarce networking resources limitations. QoS coordination for tactical network traffic should be able to monitor and react the dynamic changes in underlying network topology and service priorities. In this paper, by adopting the emerging cloud-native service mesh concept into tactical network context, we study the feasibility of intelligent QoS coordination by employing tactical service mesh(TSM) as an additional layer to support enhanced traffic quality monitoring and control. The additional TSM layer can leverage distributed service-mesh proxies at tactical mesh WAN(Wide Area Network) nodes so that service-aware differentiated QoS coordination can be effectively designed and integrated with TSM-assisted traffic monitoring and control. Also, by validating the feasibility of TSM layer for QoS coordination with miniaturized experimental setup, we show the potential of the proposed approach with several approximated battlefield traffics over a simulated TSM-enabled tactical network.

Resource Allocation and EE-SE Tradeoff for H-CRAN with NOMA-Based D2D Communications

  • Wang, Jingpu;Song, Xin;Dong, Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1837-1860
    • /
    • 2020
  • We propose a general framework for studying resource allocation problem and the tradeoff between spectral efficiency (SE) and energy efficiency (EE) for downlink traffic in power domain-non-orthogonal multiple access (PD-NOMA) and device to device (D2D) based heterogeneous cloud radio access networks (H-CRANs) under imperfect channel state information (CSI). The aim is jointly optimize radio remote head (RRH) selection, spectrum allocation and power control, which is formulated as a multi-objective optimization (MOO) problem that can be solved with weighted Tchebycheff method. We propose a low-complexity algorithm to solve user association, spectrum allocation and power coordination separately. We first compute the CSI for RRHs. Then we study allocating the cell users (CUs) and D2D groups to different subchannels by constructing a bipartite graph and Hungrarian algorithm. To solve the power control and EE-SE tradeoff problems, we decompose the target function into two subproblems. Then, we utilize successive convex program approach to lower the computational complexity. Moreover, we use Lagrangian method and KKT conditions to find the global optimum with low complexity, and get a fast convergence by subgradient method. Numerical simulation results demonstrate that by using PD-NOMA technique and H-CRAN with D2D communications, the system gets good EE-SE tradeoff performance.

Joint Cell Grouping and User Association Scheme for Clustered Heterogeneous Cellular Networks (클러스터 이기종 셀룰러 네트워크를 위한 합동 셀 그룹핑 및 사용자 접속 기법)

  • Park, Jin-Bae;Lee, Hyung Yeol;Choi, Uri;Kim, Kwang Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.6
    • /
    • pp.520-527
    • /
    • 2013
  • In this paper, a joint cell grouping and user association technique proposed for a semi-dynamic grouped network MIMO in a clustered heterogeneous cellular network (HCN). With the conventional macro BSs, small cells are being overlaid to increase a spectral efficiency per area and these small cells are expected to be concentrated to support exponentially increasing data traffic in hot spot areas. The main culprits of performance degradation in the clustered HCN are interference and load imbalance. The proposed scheme jointly handles them to maximize a proportional-fair metric. It is shown that the proposed technique can largely improve user average rate and proportional fairness among users than any other conventional schemes in the clustered HCN.

A Priority Based Transmission Control Scheme Considering Remaining Energy for Body Sensor Network

  • Encarnacion, Nico;Yang, Hyunho
    • Smart Media Journal
    • /
    • v.4 no.1
    • /
    • pp.25-32
    • /
    • 2015
  • Powering wireless sensors with energy harvested from the environment is coming of age due to the increasing power densities of both storage and harvesting devices and the electronics performing energy efficient energy conversion. In order to maximize the functionality of the wireless sensor network, minimize missing packets, minimize latency and prevent the waste of energy, problems like congestion and inefficient energy usage must be addressed. Many sleep-awake protocols and efficient message priority techniques have been developed to properly manage the energy of the nodes and to minimize congestion. For a WSN that is operating in a strictly energy constrained environment, an energy-efficient transmission strategy is necessary. In this paper, we present a novel transmission priority decision scheme for a heterogeneous body sensor network composed of normal nodes and an energy harvesting node that acts as a cluster head. The energy harvesting node's decision whether or not to clear a normal node for sending is based on a set of metrics which includes the energy harvesting node's remaining energy, the total harvested energy, the type of message in a normal node's queue and finally, the implementation context of the wireless sensor network.

Modeling and SINR Analysis of Dual Connectivity in Downlink Heterogeneous Cellular Networks

  • Wang, Xianling;Xiao, Min;Zhang, Hongyi;Song, Sida
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5301-5323
    • /
    • 2017
  • Small cell deployment offers a low-cost solution for the boosted traffic demand in heterogeneous cellular networks (HCNs). Besides improved spatial spectrum efficiency and energy efficiency, future HCNs are also featured with the trend of network architecture convergence and feasibility for flexible mobile applications. To achieve these goals, dual connectivity (DC) is playing a more and more important role to support control/user-plane splitting, which enables maintaining fixed control channel connections for reliability. In this paper, we develop a tractable framework for the downlink SINR analysis of DC assisted HCN. Based on stochastic geometry model, the data-control joint coverage probabilities under multi-frequency and single-frequency tiering are derived, which involve quick integrals and admit simple closed-forms in special cases. Monte Carlo simulations confirm the accuracy of the expressions. It is observed that the increase in mobility robustness of DC is at the price of control channel SINR degradation. This degradation severely worsens the joint coverage performance under single-frequency tiering, proving multi-frequency tiering a more feasible networking scheme to utilize the advantage of DC effectively. Moreover, the joint coverage probability can be maximized by adjusting the density ratio of small cell and macro cell eNBs under multi-frequency tiering, though changing cell association bias has little impact on the level of the maximal coverage performance.

QoS-Guaranteed Realtime Multimedia Service Provisioning on Broadband Convergence Network(BcN) with IEEE 802.11e Wireless LAN and Fast/Gigabit Ethernet

  • Kim, Young-Tak;Jung, Young-Chul;Kim, Seong-Woo
    • Journal of Communications and Networks
    • /
    • v.9 no.4
    • /
    • pp.511-523
    • /
    • 2007
  • In broadband convergence network(BcN), heterogeneous broadband wired & wireless subnetworks and various terminal equipments will be interconnected. In order to provide end-to-end realtime multimedia services on such heterogeneous networking environment, as a result, two major problems should be resolved: i) Multimedia session establishment & negotiation that adjusts the differences in the capability of multimedia data processing at the end terminal nodes, ii) quality of service(QoS)-guaranteed connection establishment or resource reservation with connection admission control(CAC) in each heterogeneous subnetworks along the path. The session layer signaling(e.g., SIP/SDP) should be extended for QoS negotiation, and must be tightly cooperating with network layer signaling or resource reservation with CAC function. In this paper we propose a session and connection management architecture for the QoS-guaranteed realtime multimedia service provisioning on BcN, with Q-SIP/SDP, resource reservation protocol with traffic engineering extension, and CAC functions. The detailed interaction scenario and related algorithms for QoS-guaranteed realtime multimedia session, resource reservation and connection establishment are explained and analyzed. From the experimental implementation of the proposed scheme on a small scale BcN testbed, we verified that the proposed architecture is applicable for the realtime multimedia service provisioning. We analyze the network performance and QoS parameters in detail.

HMIPv6 based Fast Vertical Handover Mechanism using Media Independent Handover Function (매체 무관 핸드오버 기능을 이용한 HMIPv6 기반 고속 수직적 핸드오버 메커니즘)

  • Kim, Pyung-Soo;Lee, Sang-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1B
    • /
    • pp.67-73
    • /
    • 2009
  • This paper proposes a new fast vertical handover mechanism to optimize and enhance the existing fast vertical handover HMIPv6(FV-HMIP) mechanism in heterogeneous wireless access networks. The proposed mechanism ad opts the IEEE 802.21 Media Independent Handover Function(MIHF), and thus is called the "MFV-HMIP". The Media Independent Handover Service (MIIS) in the IEEE 802.21 MIHF is extended by including new L3 inform ation to provide domain prefixes of heterogeneous neighbouring mobility anchor points(MAPs). This can eliminate the heterogeneous neighbouring MAP discovery phase in the existing FV-HMIP. Thus, the proposed MFV-HMIP can reduce the signalling traffic over wireless link and increase the possibility of predictive mode operation. Therefore, the proposed MFV-HMIP mechanism can be superior to the existing FV-HMIP mechanism for wireless resource efficiency, handover latency, and packet loss. Through analytic performance evaluations and computer si mulations, the proposed mechanism can be shown to optimize and enhance the existing mechanism.