Konduru, Venkateswara Raju;Bharamgoudra, Manjula R
Journal of information and communication convergence engineering
/
제19권3호
/
pp.166-174
/
2021
A large volume of patient data is generated from various devices used in healthcare applications. With increase in the volume of data generated in the healthcare industry, more wellness monitoring is required. A cloud-enabled analysis of healthcare data that predicts patient risk factors is required. Machine learning techniques have been developed to address these medical care problems. A novel technique called the radix-trie-based Tanimoto kernel regressive infomax boost classification (RT-TKRIBC) technique is introduced to analyze the heterogeneous health data in the cloud to predict the health risks and send alerts. The infomax boost ensemble technique improves the prediction accuracy by finding the maximum mutual information, thereby minimizing the mean square error. The performance evaluation of the proposed RT-TKRIBC technique is realized through extensive simulations in the cloud environment, which provides better prediction accuracy and less prediction time than those provided by the state-of-the-art methods.
AdaBoost tweaks the sample weight for each training set used in the iterative process, however, it is demonstrated that it provides more correlated errors as the boosting iteration proceeds if models' accuracy is high enough. Therefore, in this study, we propose a novel way to improve the performance of the existing AdaBoost algorithm by employing heterogeneous models and a stochastic twist. By employing the heterogeneous ensemble, it ensures different models that have a different initial assumption about the data are used to improve on diversity. Also, by using a stochastic algorithm with a decaying convergence rate, the model is designed to balance out the trade-off between model prediction performance and model convergence. The result showed that the stochastic algorithm with decaying convergence rate's did have a improving effect and outperformed other existing boosting techniques.
Text classification is a challenging task, especially when dealing with a huge amount of text data. The performance of a classification model can be varied depending on what type of words contained in the document corpus and what type of features generated for classification. Aside from proposing a new modified version of the existing algorithm or creating a new algorithm, we attempt to modify the use of data. The classifier performance is usually affected by the quality of learning data as the classifier is built based on these training data. We assume that the data from different domains might have different characteristics of noise, which can be utilized in the process of learning the classifier. Therefore, we attempt to enhance the robustness of the classifier by injecting the heterogeneous data artificially into the learning process in order to improve the classification accuracy. Semi-supervised approach was applied for utilizing the heterogeneous data in the process of learning the document classifier. However, the performance of document classifier might be degraded by the unlabeled data. Therefore, we further proposed an algorithm to extract only the documents that contribute to the accuracy improvement of the classifier.
실현 변동성은 강한 종속성을 가짐이 잘 알려져 있으며, 글로벌 금융 시장과 유기적으로 연관이 되어 있을 뿐만 아니라 환율, 유가, 이자율 등의 거시적인 지표와도 밀접한 관계가 있다. 본 논문은 이러한 실현 변동성의 효과적인 예측을 위해서 오토인코더를 이용한 FAHAR (autoencoder factor-augmented heterogeneous autoregressive, AE-FAHAR) 모형을 제안한다. AE-FAHAR 모형은 강한 종속성을 HAR 구조로 반영하고, 외부 효과에 대한 영향을 오토인코더를 사용하여 몇 개의 요인으로 추출하여 이를 반영한다. 오토인코더는 비선형 방법으로 요인을 추정하기에 많은 계산 시간이 필요하지만 복잡하고 비정상성을 가질 수 있는 고차원 시계열 자료의 요약에 더 적합하다. 이는 곧 실증 자료 분석을 통해 AE-FAHAR 모형이 예측 오차를 줄임을 확인할 수 있었다. 또한 계산 시간을 줄이고 추정 오차를 줄이기 위해 오토인코더에 사전학습 및 앙상블을 적용하는 등의 방법에 대해서도 논의하였다.
본 논문에서는 시각, 음향, 위치 정보를 포함하는 멀티모달 센서 입력 정보로부터 사용자가 위치한 장소의 환경 정보를 학습하고 기계학습 추론을 통해 장소를 인식하는 방법을 제안한다. 이 방법은 음영 지역에서의 정확도 감소나 추가 하드웨어 필요 등 기존 위치 정보 인식 방법이 가지는 제약을 극복 가능하고, 지도상의 단순 좌표 인식이 아닌 논리적 위치 정보 인식을 수행 가능하다는 점에서 해당 위치와 관련된 특정 정보를 활용하여 다양한 생활편의를 제공하는 위치 기반 서비스를 수행하는데 보다 효과적인 방법이 될 수 있다. 제안하는 방법에서는 스마트폰에 내장된 카메라, 마이크로폰, GPS 센서 모듈로부터 획득한 시각, 음향, 위치 정보로부터 특징 벡터들을 추출하여 학습한다. 이때 서로 다른 특성을 가진 특징 벡터들을 학습하기 위해 각각의 특징 벡터들을 서로 다른 분류기를 통해 학습한 후, 그 결과를 기반으로 최종적인 하나의 분류 결과를 얻어내는 앙상블 기법을 사용한다. 실험 결과에서는 각각의 데이터를 따로 학습하여 분류한 결과와 비교하여 높은 성능을 보였다. 또한 사용자 상황인지 기반 서비스의 성능 향상을 위한 방법으로서 제안하는 모델의 스마트폰 앱 구현을 통한 활용 가능성에 대해 논의한다.
The adsorption properties of benzene, toluene, p-xylene in MCM-41 with heterogeneous and cylindrical pore were studied using grand canonical ensemble Monte Carlo simulation. The simulated isotherms were compared with experimental ones, and the different adsorption behaviors in MCM-41 with pore diameters of 2.2 and 3.2 nm were investigated. The simulated adsorption amounts above the capillary-condensation pressure agreed with the experimental ones. The simulation results showed that most molecular planes were nearly parallel to the pore axis. This orientation was not affected by the molecular position in the pore. The molecular planes were nearly parallel to the pore surface for the adsorbate molecules close to the pore wall, and the molecules in the MCM-41 with the pore diameter of 3.2 nm were ordered along the pore axis.
본 논문은 인위적으로 생성된 가상 학습 데이터와 융합 분류기를 이용한 얼굴인식 알고리즘을 제안한다. 특징공간에서의 최근접 특징 선택 방법과 연결주의 모델에 기반한 서로 다른 형태의 분류기를 융합하여 통합효과를 얻도록 하였다. 두 분류기는 모두 학습 데이터의 공간적인 분포에 따라 생성된 가상 학습데이터를 이용하여 학습되고 이용된다. 첫째로, 특징 공간에서의 각 정보(Angular Infnrmation) 를 이용하는 최근접특징각(the Nearest Feature Angle : NFA)을 이용하여 저장된 학습데이터와 가장 근접한 것을 찾고, 둘째로, 질의(Query) 얼굴 특징 정보를 정면얼굴 영상의 특징정보로 투영하여 얻은 정보에 기반한 분류기의 결과를 이용한다. 정면영상 특징정보로의 투영은 다층 신경망을 이용하여 정면 회상망(Frontal Recall Network)을 구현하였고, 이것을 여러 개 묶어 앙상블 네트웍으로 구성한 Ensemble 회상망(Ensemble Recall Network)을 사용하여 일반화 성능을 향상시켰다. 끝으로, 각 분류기의 결과에 따라 융합 분류기가 최종 결과를 선택하도록 하였다. 제안된 알고리즘을 6 종류의 서고 다른 학습/시험데이터 군에 적용하여 평균 96.33%의 인식률을 얻었다. 이것은 특징라인에 기반한 방법(the Nearest Feature Line) 평균 에러율의 61.2% 이며, 단일 분류기를 사용한 경우 보다 안정된 견과를 얻고 있다.
데이터마이닝 기법의 클러스터링 알고리즘은 생물정보학에서 데이터 셋의 사전 정보를 고려하지 않고 중요한 유전적, 생물학적 상호작용을 찾기 위하여 적용되고 있다. 그러나 다양한 형식의 수많은 알고리즘들은 바이오데이터의 다양한 특성들과 실험의 가정 때문에 다른 클러스터링 결과들을 만들 수 있다. 본 논문에서는 바이오 데이터 셋의 특성에도 적합하면서 양질의 클러스터링 결과를 만들기 위한 새로운 방법을 제안한다. 이 방법은 여러 가지 클러스터링 알고리즘의 결과들을 유전자 알고리즘의 기본 개념인 진화적 환경에서 가장 적합한 형질을 선택하는 문제와 결합하였다. 그리고 실제 데이터 셋을 이용하여 우리의 제안하는 방법을 증명하고 실험 결과로 최적의 클러스터 결과를 보인다.
균일한 지하수 유속을 가진 불균질한 등방성 대수층 내에서 정류상태로 흐르는 지하수의 흐름과 함께 이동해가는 비반응성 오염물질에 대한 삼차원 몬테카를로 시뮬레이션이 시행되었다. 로그-정규적으로 분포되어 있는 수리 전도도 K(x)가 임의 장으로 설정되었으며 시뮬레이션 동안에 발생 할 수 있는 불확실성을 감소하기 위해 여러 가지 방법들이 시도되었다. 3,200개 오염 운들에 대한 이차공간적률의 집합적평균 $$lt;S_{ij}'(t',l')$gt;$, 그리고 오염 운중심분산 $$lt;R_{ij}'(t',l')$gt;$이 각기 다른세가지 불균질도 $\omega^2_y1.0,$ 2.5 및 5.0에 대해서 시뮬레이션 되었으며 또한 각기 다른 크기의 평균속도에 수직방향인 선형초기오염원( l=1.5 및 10)에 대해서 입자추적이 행하여 졌다 시뮬레이션된 무차원 종적률들은 일차 근사법에 의한 비에르고딕 이론적 결과와 비교적 잘 일치 하나 시뮬레이션된 무차원 횡적률들은 일차근사법에 의한 이론적 결과들과 잘 일치하지 않으며 특히 불균질도가 큰 대수층에 대해서 그리고 초기 선형오염운의 크기가 작은 무차원 횡이차공간적률에 대해서 뚜렷하게 저평가 했다. 시뮬레이션된 집합적 평균이차적률은 에르고딕 상태에 도달하지 못했으며 일차근사법에 의한 에르고딕 용질 이동에 관한 횡이차공간적률은 시뮬레이션 결과를 저평가 했음을 보인다.
일정한 평균 지하수 유속을 가진 불균질한 등방성 삼차원 대수층 내에서 정류상태로 흐르는 지하수의 흐름과 함께 이동해가는 비반응성 오염물질에 대한 몬테카를로 시뮬레이션이 시행되었다. 대수-정규적으로 분포되어 있는 수리전도도 K(x)가 임의장으로 설정되었으며 시뮬레이션 동안에 발생할 수 있는 불확실성을 감소하기 위해 여러 가지 방법들이 시도되었다. 1600개 오염운들에 대한 이차공간적률의 집합적평균(ensemble average) <$S_{ij}'(t',\;l')$>(i,\;j=1,2,3), 그리고 오염운중심분산 $R_{ij}'(t',\;l')$이 각기 다른 세 가지 불균질도${\sigma}_Y^2=0.09,\;0.23$ 및 0.46에 대해서 시뮬레이션 되었으며 또한 각기 다른 크기의 평균속도에 수직방향인 선형초기오염원(l': 1, 2, 4)에 대해서 입자추적이 행하여 졌다. 시뮬레이션 된 무차원 종적률들은 일차근사법에 의한 비에르고딕 이론적 결과와 비교적 잘 일치하나 시뮬레이션 된 무차원 횡적률들은 일차근사법에 의한 이론적 결과들 보다 더 큰 값을 보인다. 일차근사법에 의한 비에르고딕 이론적 결과는 특히 불균질도가 큰 대수층에 대해서 그리고 큰 무차원 시간에 대해서 시뮬레이션 된 무차원 횡적률들을 과소평가 했다 시뮬레이션 된 집합적 평균이차적률은 에르고딕 상태에 도달하지 못했으며 횡방향으로의 오염운 확장이종방향보다 훨씬 느리게 에르고딕 상태에 접근하는 것으로 관찰되었다. 불균질한 대수층 내에서의 오염운의 진화는 초기 오염원의 모양이나 배열상태 보다는 주로 대수층의 불균질도와 초기 오염원의 크기에 영향을 받는 것으로 밝혀졌다.가 정신의 숭고한 고유-독창성(Originality)이 피드백의 경로를 투과하면서 자신을 남에게 투영시켜 얻어내는 것이 고유성의 변종이다. 피드백은 단순한 작품의 일부가 아니라 작품을 이루는 뼈대이다 기술의 과시만으로는 예술의 행위가 될 수 없다. 작가의 예술성이 관객의 감성에 피드백 되도록 노력해야 한다 그러기 위해서는 예정된 피드백이란 느낌을 관객이 갖지 않도록 하여야 한다. 인터렉티브 미디어 아트는 초기의 형태에서 벗어나 새로운 집적된 피드백 기술로 전환하여야 할 시기가 온 것이다.료된다.시한 개체의 수술 전 방사선학적 평균 고관절 등급은 양측 모두 $3.2\pm0.9$이었고 수술 직후의 좌 우측 평균 고관절 등급은 각각 $2.7\pml.1,\;2.7\pm0.9$ (n=36) 이었다. 수술 직후와 2, 4, 8, 12, 24주 후의 고관절 등급이 수술 전에 비하여 유의적으로 개선된 것을 확인하였다.(P<0.01). 수술 후 정기적인 검사 시에 측정한 Norberg angle, percentage of femoral head coverage도 수술 전과 비교해 유의성 있게 증가하였다(P<0.01). 변형 3중 골반 절골술 직후의 평균 골반직경은 수술 전의 골반직경보다 유의적으로 증가하였으며(P<0.01)(n=36) 수술 후 평균 9.3L2.7주에 절골선 유합이 종료되었다(n=21). 반면 편측 3중 골반 절골술을 실시한 경우에는 수술 후 골반경이 수술 전과 비교해 증가하지 않았다. 변형 3중 골반 절골술후에 장액종 형성(1마리), 스크류 변위(4마리), 스크류 부러짐(1마리), 편측성 신경마비(1마리) 등의 부작용이 발생하였다. 이상의 결과를 토대로,
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.