• Title/Summary/Keyword: Heterogeneous Sensor Networks

Search Result 91, Processing Time 0.022 seconds

Self-Identification of Boundary's Nodes in Wireless Sensor Networks

  • Moustafa, Kouider Elouahed;Hafid, Haffaf
    • Journal of Information Processing Systems
    • /
    • v.13 no.1
    • /
    • pp.128-140
    • /
    • 2017
  • The wireless sensor networks (WSNs) became a very essential tool in borders and military zones surveillance, for this reason specific applications have been developed. Surveillance is usually accomplished through the deployment of nodes in a random way providing heterogeneous topologies. However, the process of the identification of all nodes located on the network's outer edge is very long and energy-consuming. Before any other activities on such sensitive networks, we have to identify the border nodes by means of specific algorithms. In this paper, a solution is proposed to solve the problem of energy and time consumption in detecting border nodes by means of node selection. This mechanism is designed with several starter nodes in order to reduce time, number of exchanged packets and then, energy consumption. This method consists of three phases: the first one is to detect triggers which serve to start the mechanism of boundary nodes (BNs) detection, the second is to detect the whole border, and the third is to exclude each BN from the routing tables of all its neighbors so that it cannot be used for the routing.

An SNMP-Based Integrated Management System with Web Interface for Wireless Sensor Networks (웹 인터페이스를 사용하는 SNMP 기반의 무선 센서 네트워크 통합 관리 시스템)

  • Choi, Jae-Won;Ko, Young-Tak;Kim, Han-Kyoung;Lee, Kwang-Hui
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.10
    • /
    • pp.43-51
    • /
    • 2009
  • In this paper, we present an integrated management system for WSNs (Wireless Sensor Networks). Each sink node of heterogeneous sensor networks is connected with a gateway. By supporting various hardware platforms and networking models, the gateway is able to collect management information from one or more WSNs and store it in a MIB (Management Information Base). The management system obtains management information from the MIB of the gateway by SNMP (Simple Network Management Protocol) and analyzes it. A manager can have access to the management system through the Web wherever the Internet is available and manage WSNs as well as sensor nodes. We implemented the proposed management system and our findings revealed the practicality of this system.

Cross-Layer Architecture for QoS Provisioning in Wireless Multimedia Sensor Networks

  • Farooq, Muhammad Omer;St-Hilaire, Marc;Kunz, Thomas
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.1
    • /
    • pp.178-202
    • /
    • 2012
  • In this paper, we first survey cross-layer architectures for Wireless Sensor Networks (WSNs) and Wireless Multimedia Sensor Networks (WMSNs). Afterwards, we propose a novel cross-layer architecture for QoS provisioning in clustered and multi-hop based WMSNs. The proposed architecture provides support for multiple network-based applications on a single sensor node. For supporting multiple applications on a single node, an area in memory is reserved where each application can store its network protocols settings. Furthermore, the proposed cross-layer architecture supports heterogeneous flows by classifying WMSN traffic into six traffic classes. The architecture incorporates a service differentiation module for QoS provisioning in WMSNs. The service differentiation module defines the forwarding behavior corresponding to each traffic class. The forwarding behavior is primarily determined by the priority of the traffic class, moreover the service differentiation module allocates bandwidth to each traffic class with goals to maximize network utilization and avoid starvation of low priority flows. The proposal incorporates the congestion detection and control algorithm. Upon detection of congestion, the congested node makes an estimate of the data rate that should be used by the node itself and its one-hop away upstream nodes. While estimating the data rate, the congested node considers the characteristics of different traffic classes along with their total bandwidth usage. The architecture uses a shared database to enable cross-layer interactions. Application's network protocol settings and the interaction with the shared database is done through a cross-layer optimization middleware.

Support the IEEE 1588 Standard in A Heterogeneous Distributed Network Environment PTP for Time Synchronization Algorithms Based Application Framework Development Method (IEEE 1588 표준을 지원하는 이기종 분산 네트워크 환경에서 시간 동기화를 위한 PTP 알고리즘 기반의 어플리케이션 프레임워크 개발 기법)

  • Cho, Kyeong Rae
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.3
    • /
    • pp.67-78
    • /
    • 2013
  • In this paper, We proposed an development method of application framework for using the precision time protocol(PTP) based on physical layer devices to synchronize clocks across a network with IEEE1588 capable devices. The algorithm was not designed as a complete solution across all conditions, but is intended to show the feasibility of such a for the PTP(Precision Time Protocol) based on time synchronization of heterogeneous network between devices that support in IEEE 1588 Standard application framework. With synchronization messages per second, the system was able to accurately synchronize across a single heavily loaded switch. we describes a method of synchronization that provides much more accurate synchronization in systems with larger networks. In this paper, using the IEEE 1588 PTP support for object-oriented modeling techniques through the 'application framework development Development(AFDM)' is proposed. The method described attempts to detect minimum delays, or precision packet probe and packet metrics. The method also takes advantage of the Tablet PC(Primary to Secondary) clock control mechanism to separately control clock rate and time corrections, minimizing overshoot or wild swings in the accuracy of the clock. We verifying the performance of PTP Systems through experiments that proposed method.

Zigbee Adaptor for Two-way Data/Event/Service Interoperation in Internet of Things (사물인터넷의 양방향 데이터/이벤트/서비스 연동을 위한 지그비 어댑터)

  • Back, Moon-Ki;Yim, Hyung-Jun;Lee, Kyu-Chul
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.4
    • /
    • pp.107-114
    • /
    • 2014
  • Things in the IoT(Internet of Things) make various services by exchanging information over networks. The IoT includes many types of WSNs(Wireless Sensor Networks) that consists of spatially distributed wireless sensor nodes and operates with the various purposes with useful technologies such as identification, sensing and communication. Typically, Zigbee network composed of low-cost and lowpower devices is mainly used for wide-area monitoring and remote device control systems. The IoT composed of various WSNs cannot interoperate among networks because of heterogeneous communication protocol and different data representation of each network, but can facilitate interconnection and information exchange among networks via the DDS, which is communication middleware standard that aims to enable real-time, high performance and interoperable data exchanges. In this paper, we proposed design of Zigbee Adaptor for two-way interoperation and data exchange between Zigbee network and other networks in the IoT. Zigbee Adaptor communicates with Zigbee network according to the Zigbee protocol and communicates with external networks via DDS. DDS-based Zigbee Adaptor can facilitate interoperation between a Zigbee network and external networks by systematic cooperation among its components.

USN Metadata Managements Agent based on XMDR-DAI for Sensor Network (센서 네트워크를 위한 XMDR-DAI 기반의 USN 메타데이터 관리 에이전트)

  • Moon, Seok-Jae;Hwang, Chi-Gon;Yoon, Chang-Pyo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.247-249
    • /
    • 2014
  • Ubiquitous Sensor Network (USN) environments, sensors and sensor nodes, and coming from heterogeneous sensor networks consist of one another, the characteristics of each component are also very diverse. Thus the sensor and the sensor nodes to interoperability between metadata for a single definition, management is very important. For this, the standard language for modeling sensor SensorML (Sensor Model Language) has. In this paper, sensor devices, sensor nodes and sensor networks for information technology in the application stage XMDR-DAI -based metadata to define the USN. The proposed XMDR-DAI USN based store and retrieve metadata for a method for effectively agent technology. Metadata of the proposed sensor is based SensorML USN environment by maintaining interoperability 50-200 USN middleware or a metadata management system for managing metadata in applications can be utilized directly.

  • PDF

Performance Improvement of the Sensor Registry System based on Sensor Metadata Reusability and Scoping (센서 메타데이터 영역화 및 재사용성 기반 센서 레지스트리 시스템 성능 향상 방법)

  • Jeong, Dongwon
    • The Journal of Korean Association of Computer Education
    • /
    • v.15 no.6
    • /
    • pp.75-82
    • /
    • 2012
  • The sensor registry system has been proposed to interpret and process semantics of sensor data independently of heterogeneous sensor networks. However, the existing sensor registry system provides the static processing method. In other words, the existing system reduces the overall performance because it executes unnecessary operations and does not consider data scope to be used. To resolve the problem of the existing sensor registry system, this paper proposes a performance enhancement model based on sensor metadata reusability and scoping. The proposed model in this paper provides a function that can decide a proper scope of sensor metadata from the sensor registry system. The proposed model improves the overall performance by providing reusability of sensor metadata. This paper also shows the advantages of the proposed model through the comparative performance evaluation.

  • PDF

Heuristic Backtrack Search Algorithm for Energy-efficient Clustering in Wireless Sensor Networks (무선 센서 네트웍에서 에너지 효율적인 집단화를 위한 경험적 백트랙 탐색 알고리즘)

  • Sohn, Surg-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.5
    • /
    • pp.219-227
    • /
    • 2008
  • As found in research on constraint satisfaction problems, the choice of variable ordering heuristics is crucial for effective solving of constraint optimization problems. For the special problems such as energy-efficient clustering in heterogeneous wireless sensor networks, in which cluster heads have an inclination to be near a base station, we propose a new approach based on the static preferences variable orderings and provide a pnode heuristic algorithm for a specific application. The pnode algorithm selects the next variable with the highest Preference. In our problem, the preference becomes higher when the cluster heads are closer to the optimal region, which can be obtained a Priori due to the characteristic of the problem. Since cluster heads are the most dominant sources of Power consumption in the cluster-based sensor networks, we seek to minimize energy consumption by minimizing the maximum energy dissipation at each cluster heads as well as sensor nodes. Simulation results indicate that the proposed approach is more efficient than other methods for solving constraint optimization problems with static preferences.

  • PDF

A Study for Protocol for Heterogeneous Interface in Sensor Networks within Water Restore Facilities (수질복원시설물 내 센서 네트워크 이기종간 인터페이스용 프로토콜에 관한 연구)

  • Kim, Chan;Shin, Jaekwon;Cha, Jaesang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.5
    • /
    • pp.255-260
    • /
    • 2012
  • Currently, the management system of wastewater treatment facility has magnified due to the stringent regulations for the protection of the environment. However, wastewater treatment system is insufficient in wastewater quality monitoring technology in specialized. Above all it aim one-to-one data transmission instead of one-to-n data transmission through sensor and network. And then, it lack compatibility toward communication system between different. Mainly it has observed detecting system of manual system. In this paper, we studied protocol technology about efficient data transmission between sensor and integration interface of water quality detecting interface for automated sensor network integration interface in water restoration facility. Therefore, we proved the possibility of efficient data transmission from communication system of different type through monitoring implementation of sensor network integration interface.

Intelligent Microclimate Control System Based on IoT

  • Altayeva, Aigerim Bakatkaliyevna;Omarov, Batyrkhan Sultanovich;Cho, Young Im
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.254-261
    • /
    • 2016
  • The present research paper is devoted to solving an urgent problem, i.e., the energy saving and energy efficiency of buildings. A rapid settlement method and experimental control of the energy conservation based on the specific characteristics of the thermal energy consumption for the heating and ventilation of the buildings, and as well as the rapid development of wireless sensor networks, can be used in a variety of monitoring parameters in our daily lives. Today's world has become quite advanced with smart appliances and devices such as laptops, tablets, TVs, and smartphones with various functions, and their use has increased significantly in our day-to-day lives. In this case, the most important role is played by a wireless sensor network with its development and use in heterogeneous areas and in several different contexts. The fields of home automation, process management, and health management systems make extensive use of wireless sensor networks. In this paper, we explore the main factors of the microclimate in an indoor environment. We control the temperature humidity, and other factors remotely using sensors and Internet-of-Things technologies.