• 제목/요약/키워드: Heterogeneous Reaction

검색결과 260건 처리시간 0.039초

리그닌 화학구조 모델의 역사적 고찰 (Historical Consideration of Lignin Models for Native Lignin Structure)

  • 황병호
    • 임산에너지
    • /
    • 제23권1호
    • /
    • pp.45-68
    • /
    • 2004
  • The word of lignin is derived from the Latin word 'ligum' meaning wood. Lignin is complex polymer consisting of coniferyl alcohol, sinapyl alcohol and p-coumaryl alcohol unit and has an amorphous, three dimensional network structure which is hard to be hydrolyzed by acid. Lignin is found in the cell wall of plants lignified. The mode of polymerization of these alcohols in the cell wall lead to a heterogeneous branched and cross-linked polymer in which phenyl propane units are linked by carbon-carbon and carbon-oxygen bonds. This polymerization of precursors, p-coumaryl alcohol, coniferyl alcohol and sinapyl alcohol to lignin is formed by enzymic dehydrolyzation. The reaction is initiated by an electron transfer which results in the formation of resonance-stabilized phenoxy radical. The combination of these radicals produces a variety of dimers, trimers and oligomers and so on. Lignin research has been divided into basic and practical application field. The basic studies contains biosynthesis, chemical structure, distribution in the cell wall and reactivity by reductants, oxidants and organic solvents. The application research will be approached the reaction of lignin in various pulp making involving pulp bleaching and its effect on pulp qualities. Lignin also will be studied for the production of fine chemicals, polymer products and the conservation into an energy source like petroleum oil because the amount of lignin produced in pulp making process is more than 51,000,000 tons per year in the world. Both basic and application research must lay emphasis on the development for the utilization of lignin and the pulping process. But these researches can not be completed without understanding lignin structure containing functional groups. Therefore, this paper was focused on the review of lignin formulation which has been studied since 1948 in chronological order. This review was based on monomers, dimers, trimers and tetramers of phenyl propane unit structures which were isolated and identified by different methods from various wood.ious wood.

  • PDF

고정화된 이온성 액체 촉매를 이용한 디메틸카보네이트 합성 반응에 대한 속도론적 고찰 (A Kinetic Study on the Synthesis of Dimethylcarbonate by Using Immobilized Ionic Liquid Catalyst)

  • 김동우;김동규;김철웅;고재천;박대원
    • Korean Chemical Engineering Research
    • /
    • 제48권3호
    • /
    • pp.332-336
    • /
    • 2010
  • 이미다졸염 형태의 이온성 액체를 구조유도체를 사용하지 않고 솔-젤 법으로 무정형 실리카에 담지시켜 고정화된 이온성 액체 촉매를 제조하였다. 이 촉매를 에틸렌카보네이트와 메탄올과의 에스테르 교환반응에 의한 디메틸카보네이트(DMC)의 합성 반응에 사용한 결과 우수한 촉매 활성을 나타내었다. DMC 합성 반응을 두 단계의 반응식으로 가정한 모델을 설정하여 반응온도와 촉매량을 변화시켜 실험한 결과와 비교한 속도론적 연구에서 실험 결과가 반응모델에 잘 일치하는 것을 알 수 있었다. 이로부터 계산한 유사 활성화 에너지 값은 67.4 kJ/mol 이었다.

공기 중에서 망간 다이옥사이드에 의한 아민에서 이민 또는 나이트릴로의 선택적 산화 반응 (Selective Oxidation of Amines to Imines or Nitriles by Manganese Dioxide in Air)

  • 김요한;황승규;이윤식;김정원
    • 공업화학
    • /
    • 제25권2호
    • /
    • pp.215-221
    • /
    • 2014
  • 염기 처리에 의한 간단한 방법으로 합성된 $MnO_2$ (B-$MnO_2$)는 불균일 촉매시스템으로 호기성 조건에서 효과적인 아민 산화반응을 보여주었다. 이 B-$MnO_2$ 촉매는 다양한 종류의 방향족, 이원자 화합물, 비활성 지방족 등의 아민의 전환에 높은 활성과 선택성을 보여주었다. 이러한 산화반응은 온화한 온도($50^{\circ}C$)와 대기압의 공기 조건하에서 아민을 중간체인 이민으로 전환하고 자가 축합(self-condensation) 또는 산화적 탈수소화(oxidative dehydrogenation)을 통해 다이이민(diimine) 또는 나이트릴(nitrile)을 생성하였다. 사용된 촉매는 여과로 쉽게 분리할 수 있었고 5번 이상의 재사용 실험에서도 일정이상의 높은 수율을 보여주었다. 따라서 B-$MnO_2$는 아민 산화반응을 통해 이민과 나이트릴을 얻음에 있어 경제적으로나 환경친환적으로 효과적인 면을 보여 줌으로써, 그린화학(green chemistry)의 목적에 적합하다.

황화납 양자점 감지막을 통해 감도가 개선된 수소센서 (Sensitivity enhancement of H2 gas sensor using PbS quantum dots)

  • 김세완;김나리;권진범;김재건;정동건;공성호;정대웅
    • 센서학회지
    • /
    • 제29권6호
    • /
    • pp.388-393
    • /
    • 2020
  • In this study, a PbS quantum dots (QDs)-based H2 gas sensor with a Pd electrode was proposed. QDs have a size of several nanometers, and they can exhibit a high surface area when forming a thin film. In particular, the NH2 present in the ligand of PbS QDs and H2 gas are combined to form NH3+, subsequently the electrical characteristics of the QDs change. In addition to the resistance change owing to the reaction between Pd and H2 gas, the resistance change owing to the reaction between the NH2 of PbS QDs and H2 gas increases the current signal at the sensor output, which can produce a high output signal for the same concentration of H2 gas. Using the XRD and absorbance properties, the synthesis and particle size of the synthesized PbS QDs were analyzed. Using PbS QDs, the sensitivity was significantly improved by 44%. In addition, the proposed H2 gas sensor has high selectivity because it has low reactivity with heterogeneous gases such as C2H2, CO2, and CH4.

수처리용 방전 리액터의 개발과 방전 발광의 분광학적 분석 연구 (The development of the discharge reactor for water purification and a spectroscopic study on its discharge emission)

  • 한상보;박재윤;김종석;정장근;고희석;박상현
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.581-582
    • /
    • 2005
  • In order to apply the discharge plasma processing. to industrial areas, the control of the chemical reaction mechanism is necessary. The hybrid plasma reactor was designed for the effective treatment of wastewater and hazardous volatile organic substances. This plasma reactor was similar to the barrier discharge, and surface discharge on the dielectric surface was propagated to the water surface strongly for the heterogeneous chemical reaction at the interface between the working gas and the water surface. The discharge emission in this discharge reactor was mainly $N_2$ second positive band in the case of $N_2$ or air gas atmosphere, and intensities from OH radicals in Ar gas atmosphere were stronger than in $N_2$ or air gas atmosphere. From this result, it is necessary to apply Ar gas for the effective generation of OH radicals in this plasma reactor.

  • PDF

탄소층으로 캡슐화된 Ni나노입자 촉매의 CO2 메탄화 반응 (Carbon-Encapsulated Ni Catalysts for CO2 Methanation)

  • 김혜정;김승보;김동현;윤재랑;김민재;전상구;이경자;이규복
    • 한국재료학회지
    • /
    • 제31권9호
    • /
    • pp.525-531
    • /
    • 2021
  • Carbon-encapsulated Ni catalysts are synthesized by an electrical explosion of wires (EEW) method and applied for CO2 methanation. We find that the presence of carbon shell on Ni nanoparticles as catalyst can positively affect CO2 methanation reaction. Ni@5C that is produced under 5 % CH4 partial pressure in Ar gas has highest conversions of 68 % at 350 ℃ and 70 % at 400 ℃, which are 73 and 75 % of the thermodynamic equilibrium conversion, respectively. The catalyst of Ni@10C with thicker carbon layer shows much reduced activity. The EEW-produced Ni catalysts with low specific surface area outperform Ni catalysts with high surface area synthesized by solution-based precipitation methods. Our finding in this study shows the possibility of utilizing carbon-encapsulated metal catalysts for heterogeneous catalysis reaction including CO2 methanation. Furthermore, EEW, which is a highly promising method for massive production of metal nanoparticles, can be applied for various catalysis system, requiring scaled-up synthesis of catalysts.

Saccharification of Foodwastes Using Cellulolytic and Amylolytic Enzymes from Trichoderma harzianum FJ1 and Its Kinetics

  • Kim Kyoung-Cheol;Kim Si-Wouk;Kim Myong-Jun;Kim Seong-Jun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제10권1호
    • /
    • pp.52-59
    • /
    • 2005
  • The study was targeted to saccharify foodwastes with the cellulolytic and amylolytic enzymes obtained from culture supernatant of Trichoderma harzianum FJ1 and analyze the kinetics of the saccharification in order to enlarge the utilization in industrial application. T. harzianum FJ1 highly produced various cellulolytic (filter paperase 0.9, carboxymethyl cellulase 22.0, ${\beta}$-glucosidase 1.2, Avicelase 0.4, xylanase 30.8, as U/mL-supernatant) and amylolytic (${alpha}$-amylase 5.6, ${\beta}$-amylase 3.1, glucoamylase 2.6, as U/mL-supernatant) enzymes. The $23{\sim}98\;g/L$ of reducing sugars were obtained under various experimental conditions by changing FPase to between $0.2{\sim}0.6\;U/mL$ and foodwastes between $5{\sim}20\%$ (w/v), with fixed conditions at $50^{\circ}C$, pH 5.0, and 100 rpm for 24 h. As the enzymatic hydrolysis of foodwastes were performed in a heterogeneous solid-liquid reaction system, it was significantly influenced by enzyme and substrate concentrations used, where the pH and temperature were fixed at their experimental optima of 5.0 and $50^{\circ}C$, respectively. An empirical model was employed to simplify the kinetics of the saccharification reaction. The reducing sugars concentration (X, g/L) in the saccharification reaction was expressed by a power curve ($X=K{\cdot}t^n$) for the reaction time (t), where the coefficient, K and n. were related to functions of the enzymes concentrations (E) and foodwastes concentrations (S), as follow: $K=10.894{\cdot}Ln(E{\cdot}S^2)-56.768,\;n=0.0608{\cdot}(E/S)^{-0.2130}$. The kinetic developed to analyze the effective saccharification of foodwastes composed of complex organic compounds could adequately explain the cases under various saccharification conditions. The kinetics results would be available for reducing sugars production processes, with the reducing sugars obtained at a lower cost can be used as carbon and energy sources in various fermentation industries.

Water Gas Shift Reaction을 위한 Multi-tubular Reactor 모델링 및 모사 (Rigorous Modeling and Simulation of Multi-tubular Reactor for Water Gas Shift Reaction)

  • 박준용;최영재;김기현;오민
    • Korean Chemical Engineering Research
    • /
    • 제46권5호
    • /
    • pp.931-937
    • /
    • 2008
  • 공정변수의 변화와 반응기의 성능을 정확하게 예측하기 위하여 Water Gas Shift Reaction(WGSR)을 위한 Multi-Tubular Reactor (MTR)의 상세 multiscale 모델링과 모사를 수행하였다. MTR은 비 균일 고체 촉매로 충진 된 4개의 관형반응기와 냉각을 위해 주변을 싸고 있는 shell side로 구성되어 있다. 유체의 흐름과 반응 kinetics가 반응기 성능에 큰 영향을 주고 있는 점을 고려할 때, Computational Fluid Dynamics (CFD)기법과 공정모델링 기법을 포함한 multiscale 방법론의 채택은 자연스럽고 필수 불가결한 일이다. $345^{\circ}C$로 관형반응기 부분으로 유입된 반응물은 반응의 결과 $390^{\circ}C$$45^{\circ}C$가량 온도가 증가하였으며, CO의 전환율은 0.89에 이르렀다. 쉘 사이드로 $190^{\circ}C$로 유입된 유체는 쉘 출구에서 $240^{\circ}C$로 약 $50^{\circ}C$ 가량의 온도 증가를 보였으며 이를 통하여 에너지 절감효과를 가져 올 수 있었으며 높은 전환율을 얻기 위해 반응기 부분의 온도를 적절히 제어할 수 있었다. 모사의 결과는 여러 문헌에 보고된 실험 결과와 매우 근접한 값을 나타내 본 연구를 통해 제시된 모델과 모사의 결과가 정확함을 알 수 있었다.

루테늄 담지 활성탄-마그네시아 혼합 촉매 상에서 알긴산의 저분자화 연구 (Ru-based Activated Carbon-MgO Mixed Catalyst for Depolymerization of Alginic Acid)

  • 양승도;김형주;박재현;김도희
    • 청정기술
    • /
    • 제28권3호
    • /
    • pp.232-237
    • /
    • 2022
  • 해조류 바이오매스 중 갈조류의 주요 구성 성분인 알긴산은 다양한 산업에서 널리 사용되어지며, 촉매적 저분자화를 통해 당, 당알코올, 퓨란계, 그리고 유기산과 같은 고부가가치 화합물로 전환할 수 있다. 본 연구에서는 루테늄 담지 활성탄과 마그네시아를 혼합하여 알긴산 저분자화 반응에 적용하고자 하였다. 이러한 불균일계 촉매 시스템은 생성물에 대한 분리가 용이하고 정제 과정의 간소화가 장점으로 작용한다. 반응 결과, 탄소 수 5개 이하의 저분자량 알코올 및 유기산이 생성되었으며, 최적의 반응 조건 탐색을 통해 최종적으로 1 wt% 알긴산 수용액 30 mL, 루테늄 담지 활성탄 100 mg, 마그네시아 100 mg, 반응 온도 210 ℃, 반응 시간 1 h의 반응 조건에서 29.8%의 알코올에 대한 탄소 수율과 43.8%의 알코올 포함 액상 생성물에 대한 총 탄소 수율을 확보하였다.

Heterogeneous growth of the triploid Pacific oysters Crassostrea gigas created by chemical inhibition of polar body release

  • Jo, Qtae;Han, Jong-Chul;Hur, Yong-Baek;Byun, Soon Kyu;Moon, Tae-Seok
    • 한국패류학회지
    • /
    • 제30권4호
    • /
    • pp.443-447
    • /
    • 2014
  • Triploids have several potential advantages over diploids in aquaculture, drawing an elevated commercial reaction into the realistic application of the techniques despite we are still in the early stage of triploid industry for the Pacific oysters Crassostrea gigas. We traced the growth performance of the triploid C. gigas for over a year from hatchery spats, which was created by manipulations of chemicals (Cytochalasin B, CB or 6-Dimethylaminopurine, 6-DMAP). The growth was clearly marked by an initial longer dormancy and following a great magnitude of heterogeneity. The dormancy was almost 9 to 10-month long or even longer and was considered as a downside of the creation. The heterogeneity was magnified by appearance of extraordinarily growing oysters in part during summer season, which could be a representative upside of the triploids. Overall, however, the results were not as positive as were expected. The longer dormancy and following heterogeneity observed in our practice could be marked as an additional negative sign of the chemical use. The present study, thus, might be highly indicative in the introduction of biological cross between tetraploid and diploid to produce natural triploid embryos.