• Title/Summary/Keyword: Heterogeneous Reaction

Search Result 260, Processing Time 0.023 seconds

Nanocrystalline Copper Oxide(II)-Catalyzed Alkyne-Azide Cycloadditions

  • Song, Young-Jin;Yoo, Chung-Yul;Hong, Jong-Tai;Kim, Seung-Joo;Son, Seung-Uk;Jang, Hye-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.8
    • /
    • pp.1561-1564
    • /
    • 2008
  • Although the use of Cu(II) salts as catalysts without reductants is limited in the cycloaddition of acetylenes with azides, the catalytic system employing average 10 nm CuO(II) nanoparticles in the absence of reductants shows good catalytic activity to form 1,4-disubstituted 1,2,3-triazoles even in wet THF as well as water. It is also noticeable that CuO(II) nanoparticle catalysts can be recycled with consistent activity. A range of alkynes and azides were subject to the optimized CuO(II) nanoparticle-catalyzed cycloaddition reaction conditions to afford the desired products in good yields.

Preparation of the MnO2/Macroporous Carbon for PET Glycolysis

  • Choi, Bong Gill;Yang, MinHo
    • Journal of Powder Materials
    • /
    • v.25 no.3
    • /
    • pp.203-207
    • /
    • 2018
  • Plastic pollution is threatening human health and ecosystems, resulting in one of the biggest challenges that humanity has ever faced. Therefore, this study focuses on the preparation of macroporous carbon from biowaste (MC)-supported manganese oxide ($MnO_2$) as an efficient, reusable, and robust catalyst for the recycling of poly(ethylene terephthalate) (PET) waste. As-prepared $MnO_2/MC$ composites have a hierarchical pore network and a large surface area ($376.16m^2/g$) with a narrow size distribution. $MnO_2/MC$ shows a maximum yield (98%) of bis(2-hydroxyethyl)terephthalate (BHET) after glycolysis reaction for 120 min. Furthermore, $MnO_2/MC$ can be reused at least nine times with a negligible decrease in BHET yield. Based on this remarkable catalytic performance, we expect that $MnO_2$-based heterogeneous catalysts have the potential to be introduced into the PET recycling industry.

Zundel- and Eigen-like Surface Hydrated Protons on Pt(111)

  • Kim, Youngsoon;Park, Youngwook;Shin, Sunghwan;Kang, Heon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.167.1-167.1
    • /
    • 2016
  • The interaction between adsorbed water and hydrogen on metallic surfaces is important for fundamental understanding of heterogeneous catalysis and electrode surface reactions in acidic environment. Here, we explore a long-standing question of whether hydronium ion can exist or not on a Pt surface coadsorbed with atomic hydrogen and water. Studies based on mass spectrometry and infrared spectroscopy show clear evidence that hydrogen atoms are converted into hydrated protons on a Pt(111) surface. The preferential structures of hydrated protons are identified as multiply hydrated $H_5O_2{^+}$ and $H_7O_3{^+}$ species rather than as hydronium ions. The multiply hydrated protons may be regarded as two dimensional zundel ($H_5O_2{^+}$) and Eigen cation ($H_7O_3{^+}$) in water-metal interface. These surface-bound hydrated protons may be key surface intermediates of the electrochemical interconversion between adsorbed hydrogen atoms and solvated protons.

  • PDF

Single Particle Characterization of Aerosol Particles Collected During "Asian Dust" Storm Events in the Spring of 2000 and 2001, Using Low-Z Electron Probe X-ray Microanalysis (단일입자분석 (Low-Z Electron Probe X-ray Microanalysis)을 이용한 2000년, 2001년에 발생한 황사 입자의 특성분석)

  • 황희진;김혜경;노철언
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.4
    • /
    • pp.415-425
    • /
    • 2003
  • A single particle analysis, called low-Z electron probe X-ray microanalysis was applied to characterize the atmospheric aerosols collected during Asian Dust storm events in the year of 2000 and 2001. Most frequently encountered chemical species were the soil-originated species such as aluminosilicates, silicon dioxide, and calcium carbonate. Also various species such as carbon -rich, organics, sea salts, and some reacted calcium carbonate were identified. The observation of internally mixed particles oi calcium carbonate, calcium nitrate and/or calcium sulfate shows the occurrence of the heterogeneous reaction between Asian Dust particles and NO$_{x}$ and/or SO$_{x}$ species in the atmosphere.ere.

Numerical Studies on Combustion Characteristics of a Hybrid Catalytic Combustor (하이브리드 촉매 연소기의 연소특성에 관한 수치적 연구)

  • Hwang, Chul-Hong;Jeong, Young-Sik;Lee, Chang-Eon
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.328-334
    • /
    • 2000
  • The hybrid catalytic(catalytic+thermal) combustor of a lean methane-air mixture on platinum catalyst was investigated numerically using a 2-D boundary layer model with detailed homogeneous and heterogeneous chemistries. For the more accurate calculations, the actual surface site density of monolith coated with platinum was decided by the comparison with experimental data. It was found that the homogeneous reactions in the monolith had little effect on the change of temperature profile, methane conversion rate and light off location. However, the radicals such as OH and CO were produced rapidly at exit by homogeneous reactions. Thus the homogeneous reactions were important to predict the productions of CO and NOx exactly. In thermal combustor, the production of $N_2O$ was more dominant than that of NO due to the relative important of the reaction $N_2+O(+M){\to}N_2O(+M)$. Finally the production of CO and NOx by amount of methane addition were studied.

  • PDF

Silica Sulfuric Acid/HNO3 as a Novel Heterogeneous System for the Nitrolysis of DADN to HMX under Mild Conditions

  • Bayat, Yadollah;Mostafavi, Mohammad Mahdi Ahari
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3551-3553
    • /
    • 2012
  • 1,5-Diacetyl-3,7-dinitro-l,3,5,7-tetraazacyclooctane (DADN) is a key intermediate in the preparation of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), one of the most powerful high-melting explosives. The present investigation focuses on nitrolysis of DADN to HMX by developing a new nitrolysis process involving the use of nitric acid catalyzed by Silica Sulfuric Acid (SSA). In order to optimize the process parameters for synthesis of HMX to obtain higher yield and purity, a study was carried out with variation of some parametric conditions like time, mole ratio of SSA and nitric. This method gave us green and mild conditions for nitration reaction.

Preparation and Permeation Characteristics of Alumina Composite Membranes by CVD and Evaporation-Oxidation Process (화학증착 및 증발-산화법에 의한 알루미나 복합분리막의 제조 및 투과특성)

  • 안상옥;최두진;현상훈;정형진;유광수
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.8
    • /
    • pp.678-684
    • /
    • 1993
  • Alumina composite membranes were prepared by chemical vapor deposition and evaporation-oxidation process. For CVD process, deposition was carried out using aluminum-tri-isopropoxide at 35$0^{\circ}C$, 2 torr by heterogeneous reaction, and for evaporation-oxidation process, alumina composite membranes were prepared by evaporation of aluminum and dry oxidation at 80$0^{\circ}C$. As deposition time increases, water flux and N2 gas permeability of the composite membranes prepared by both processes were reduced. Applying gas permeation model, permeability and cracking possibility of top layer were evaluated.

  • PDF

Modeling on Hydrogen Effects for Surface Segregation of Ge Atoms during Chemical Vapor Deposition of Si on Si/Ge Substrates

  • Yoo, Kee-Youn;Yoon, Hyunsik
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.275-278
    • /
    • 2017
  • Heterogeneous semiconductor composites have been widely used to establish high-performance microelectronic or optoelectronic devices. During a deposition of silicon atoms on silicon/germanium compound surfaces, germanium (Ge) atoms are segregated from the substrate to the surface and are mixed in incoming a silicon layer. To suppress Ge segregation to obtain the interface sharpness between silicon layers and silicon/germanium composite layers, approaches have used silicon hydride gas species. The hydrogen atoms can play a role of inhibitors of silicon/germanium exchange. However, there are few kinetic models to explain the hydrogen effects. We propose using segregation probability which is affected by hydrogen atoms covering substrate surfaces. We derived the model to predict the segregation probability as well as the profile of Ge fraction through layers by using chemical reactions during silicon deposition.

SnO2/SiO2 Nanocomposite Catalyzed One-Pot Synthesis of 2-Arylbenzothiazole Derivatives

  • Yelwande, Ajeet A.;Navgire, Madhukar E.;Tayde, Deepak T.;Arbad, Balasaheb R.;Lande, Machhindra K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1856-1860
    • /
    • 2012
  • $SnO_2/SiO_2$ nanocomposite has been synthesized by using sol-gel method. Prepared catalytic materials has been well characterized by using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR), Brunauer-Emmer-Teller (BET) surface area, and temperature-programmed desorption of ammonia ($NH_3$-TPD). $SnO_2/SiO_2$ nanocomposite catalyzed synthesis of 2-arylbenzothiazoles by the cyclocondensation of 2-aminothiophenol and aromatic aldehydes under reflux condition in 1:1 EtOH:$H_2O$. After completion of the reaction, catalyst can be recovered efficiently and reused with consistent activity.

Fabrication of Double-Doped Magnetic Silica Nanospheres and Deposition of Thin Gold Layer

  • Park, Sang-Eun;Lee, Jea-Won;Haam, Seung-Joo;Lee, Sang-Wha
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.869-872
    • /
    • 2009
  • Double-doped magnetic particles that incorporated magnetites into both the surface and inside the silica cores were fabricated via the sol-gel reaction of citrate-stabilized magnetites with silicon alkoxide. Double-doped magnetic particles were easily fabricated and exhibited an higher magnetism in comparison to the singledoped magnetic particles that were prepared by the erosion of surface-deposited magneties from double-doped magentic particles. Thin gold layer was formed over magnetic silica nanospheres via nanoseed-mediated growth of gold clusters. The plasmon-derived absorption bands of double-doped magnetic silica-gold nanoshells were more broadened and shifted down by ca. 20 nm as compared to those of single-doped magnetic silicagold nanoshells, which were attributed to not only the surface scattering of incident light due to relatively rough surafce morphology, but also heterogeneous permittivity of dielectric cores due to surface-deposited magnetites.