• Title/Summary/Keyword: Heterogeneous Data Fusion (HDF)

Search Result 1, Processing Time 0.014 seconds

Effective Heterogeneous Data Fusion procedure via Kalman filtering

  • Ravizza, Gabriele;Ferrari, Rosalba;Rizzi, Egidio;Chatzi, Eleni N.
    • Smart Structures and Systems
    • /
    • v.22 no.5
    • /
    • pp.631-641
    • /
    • 2018
  • This paper outlines a computational procedure for the effective merging of diverse sensor measurements, displacement and acceleration signals in particular, in order to successfully monitor and simulate the current health condition of civil structures under dynamic loadings. In particular, it investigates a Kalman Filter implementation for the Heterogeneous Data Fusion of displacement and acceleration response signals of a structural system toward dynamic identification purposes. The procedure is perspectively aimed at enhancing extensive remote displacement measurements (commonly affected by high noise), by possibly integrating them with a few standard acceleration measurements (considered instead as noise-free or corrupted by slight noise only). Within the data fusion analysis, a Kalman Filter algorithm is implemented and its effectiveness in improving noise-corrupted displacement measurements is investigated. The performance of the filter is assessed based on the RMS error between the original (noise-free, numerically-determined) displacement signal and the Kalman Filter displacement estimate, and on the structural modal parameters (natural frequencies) that can be extracted from displacement signals, refined through the combined use of displacement and acceleration recordings, through inverse analysis algorithms for output-only modal dynamics identification, based on displacements.