• Title/Summary/Keyword: Heteroatom-doped carbon

Search Result 3, Processing Time 0.021 seconds

Heteroatom-doped carbon nanostructures as non-precious cathode catalysts for PEMFC (이종 원자 도핑 탄소 나노재료를 이용한 PEMFC Cathode용 촉매 합성 및 평가)

  • Jo, G.Y.;Shanmugam, S.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.406-409
    • /
    • 2012
  • Recently, enormous research efforts have been focused on the development of non-precious catalysts to replace Pt for electrocatalytic oxygen reduction reaction (ORR), and to reduce the cost of proton exchange membrane fuel cells (PEMFCs). In recent years, heteroatom (N, B, and P) doped carbon nanostructures have been received enormous importance as a non-precious electrode materials for oxygen reduction. Doping of foreign atom into carbon is able to modify electronic properties of carbon materials. In this study, nitrogen and boron doped carbon nanostructures were synthesized by using a facile and cost-effective thermal annealing route and prepared nanostructures were used as a non-precious electrocatalysts for the ORR in alkaline electrolyte. The nitrogen doped carbon nanocapsules (NCNCs) exhibited higher activity than that of a commercial Pt/C catalyst, excellent stability and resistance to methanol oxidation. The boron-doped carbon nanostructure (BC) prepared at $900^{\circ}C$ showed higher ORR activity than BCs prepared lower temperature (800, $700^{\circ}C$). The heteroatom doped carbon nanomaterials could be promising candidates as a metal-free catalysts for ORR in the PEMFCs.

  • PDF

Development of cobalt encased in nitrogen and sulfur co-doped carbon nanotube for non-precious metal catalyst toward oxygen reduction reaction

  • Kim, Tae-Hyun;Sang, Byoung-In;Yi, Sung-Chul
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.6
    • /
    • pp.499-503
    • /
    • 2018
  • In this paper, cobalt embedded in nitrogen and sulfur co-doped carbon nanotubes (CoNSTs) were synthesized for oxygen reduction reaction (ORR) catalysts. The CoNSTs were prepared through a facile heat treatment method without any templates. Different amounts of the metal salt were employed to examine the physicochemical and electrochemical properties of the CoNSTs. The CoNSTs showed the bamboo-like tube morphology with the encased Co nanoparticles in the tubes. Through the x-ray photoelectron spectroscopy analysis, the catalysts exhibited different chemical states of the nitrogen and sulfur species. As a result, the CoNST performed high activity toward the ORR in an acidic condition with the onset potential of 0.863 V (vs. reversible hydrogen electrode). It was clearly demonstrated from the electrochemical characterizations that the quality of the nitrogen and sulfur species significantly influences the ORR activity rather than the total amount of the dopants.

Solution Plasma Synthesis of BNC Nanocarbon for Oxygen Reduction Reaction

  • Lee, Seung-Hyo
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.5
    • /
    • pp.332-336
    • /
    • 2018
  • Alkaline oxygen electrocatalysis, targeting anion exchange membrane alkaline-based metal-air batteries has become a subject of intensive investigation because of its advantages compared to its acidic counterparts in reaction kinetics and materials stability. However, significant breakthroughs in the design and synthesis of efficient oxygen reduction catalysts from earth-abundant elements instead of precious metals in alkaline media still remain in high demand. One of the most inexpensive alternatives is carbonaceous materials, which have attracted extensive attention either as catalyst supports or as metal-free cathode catalysts for oxygen reduction. Also, carbon composite materials have been recognized as the most promising because of their reasonable balance between catalytic activity, durability, and cost. In particular, heteroatom (e.g., N, B, S or P) doping on carbon materials can tune the electronic and geometric properties of carbon, providing more active sites and enhancing the interaction between carbon structure and active sites. Here, we focused on boron and nitrogen doped nanocarbon composit (BNC nanocarbon) catalysts synthesized by a solution plasma process using the simple precursor of pyridine and boric acid without further annealing process. Additionally, guidance for rational design and synthesis of alkaline ORR catalysts with improved activity is also presented.