• Title/Summary/Keyword: Hesperidin glucoside

Search Result 5, Processing Time 0.022 seconds

Cell recovery, anti-inflammatory, and melanogenesis inhibitory activity of water soluble hesperidin in vitro (수용성 헤스페리딘(Hesperidin)에 의한 세포 손상회복, 항염증 및 melanin 생성억제 활성 )

  • Kyung-Ae Lee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.1278-1288
    • /
    • 2023
  • Hesperidin(HD) is a a potent antioxidant flavonoid found in various plants. In this study, the recovery of cell death, anti-inflammatory, and melanogenesis inhibitory activities of Hesperidin glucoside (HDG), a water-soluble HD, were compared with HD in vitro. HDG was prepared by an enzymatic glycosylation reaction from HD, and the water solubility of HDG was increased by more than 20,000 times compared to HD. Cell toxicity was significantly lower for HDG than HD. Both HD and HDG increase cell viability in UV damaged HaCaT cells. HD and HDG also reduced an inflammatory mediator such as nitric oxide (NO), and pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the cells irradiated with UV, and the reducing effect of HDG was slightly higher than that of HD. In the melanogenesis inhibition assay using the Melanoma B16F10 cells, HDG showed a superior inhibitory activity compared to HD. In conclusion, HDG, a glucosylated product of HD with high water solubility showed more than equal ability of cell recovery and anti-inflammatory potential, and higher melanogenesis inhibition activity compared to HD in vitro.

Phytochemical Analysis of Viticis Fructus (만형자의 성분분석)

  • Kang, Sam-Sik;Kim, Ju-Sun;Kim, Hae-Jung;Jung, Young-Ran;Shin, Seung-Won
    • Korean Journal of Pharmacognosy
    • /
    • v.25 no.3
    • /
    • pp.214-220
    • /
    • 1994
  • From the Viticis Fructus n-hydrocarbons, ${\beta}-sitosterol$ $3-O-{\beta}-_D-glucoside$ and hesperidin along with the known polyoxygenated flavonoids such as vitexicarpin, artemetin and luteolin, and vanillic acid were isolated and identified by means of spectroscopic methods. HPLC analysis of the flavonoid components from the MeOH extract was established. Phytochemical analyses of the domestic plant sample and the imported ones were conducted and the flavonoid compositions of the domestic samples were greatly different from those of the imported ones.

  • PDF

Phytochemical Constituents of Schizonepeta tenuifolia Briquet

  • Lee, Il-Kyun;Kim, Min-Ah;Lee, Seung-Young;Hong, Jong-Ki;Lee, Jei-Hyun;Lee, Kang-Ro
    • Natural Product Sciences
    • /
    • v.14 no.2
    • /
    • pp.100-106
    • /
    • 2008
  • Column chromatographic separation of the MeOH extract from the aerial parts of Schizonepeta tenuifolia Briquet led to the isolation of twelve terpenes (1 - 11 and 17), four phenolics (13 - 16) and a hexenyl glucoside (12). Their structures were determined by spectroscopic means to be (-)-pulegone (1), piperitenone (2), p-cymene-3,8-diol (3), schizonepetoside A (4), schizonepetoside C (5), (+)-spatulenol (6), ursolic acid (7), $2{\alpha}$,$3{\alpha}$,$24{\alpha}$,-trihydroxyolean-12en-28oic acid (8), $5{\alpha}$,$8{\alpha}$-epidioxyergosta-6,22-diol-$3{\beta}$-ol (9), stigmast-4-en-3-one (10), ${\beta}-sitosterol$ (11), (Z)-3-hexenyl-1-O-${\beta}$-D-glucopyranoside (12), rosmarinic acid (13), apigenin-7-O-${\beta}$-D-glucopyranoside (14), luteolin-7-O-${\beta}$-D-glucuronopyranoside (15), hesperidin (16) and trans-phytol (17). Compounds 2, 3, 8, 9 and 12 were for the first time isolated from S. tenuifolia Briq.

Chemoprevention of Azoxymethane Induced Colon Cancer in Rats by Feeding Grange Juice, Soy, Wheat Bran and Flaxseed

  • Om, Ae-Son;Yuko Miyagi;Chee, Kew-Man;Maurice R. Bennink
    • Nutritional Sciences
    • /
    • v.2 no.2
    • /
    • pp.71-75
    • /
    • 1999
  • Epidemiologic studies consistently demonstrate an inverse relationship between risk for colon canter and consumption of fruits and vegetables. Wheat bran, flax and soy contain dietary fiber and phytochemicals, such as lignans and isoflavones, that may inhibit colon carcinogenesis. Orange juice contains hesperidin, a flavanone glucoside that protects against colon carcinogenesis. This study determined if feeding orange juice, wheat bran, soy and flaxseed (combined diet) would inhibit azoxymethane (AOM) induced colon cancer. Cancer was initiated in male Fisher 344 rats by injecting 15 mg AOM/kg of weight at 22 and 29 days of age. One week after the second AOM injection, rats (N = 30) in the combined diet group received dry diet containing wheat bran (4%), soy with ethanol soluble phytochemirals(13%) and flaxseed (8%) and orange juice replaced drinking water. The control group remained on the control diet and received distilled water to drink. The rats were killed 28 weeks later, and colon tissues and tumors were removed for histologic analysis. Feeding the combined diet significantly reduced tumor incidence (p < 0.05), however tumor multiplicity was not changed (p > 0.05, 0.9 tumors/rat fed the combined diet vs 1.2 for controls). Also, tumor burden was only marginally reduced in rats fed the combined diet vs control rats (65 vs 210 mg of tumor/rats, respectively). The reduction in tumor incidence was associated with a decreased labeling index and proliferation zone in normal appearing colon mucosa. Therefore, this study shows that phytochemicals in wheat bran, soy, flax and orange juice reduce colon carcinogenesis, presumably by decreasing cell proliferation and enhancing cell differentiation.

  • PDF

Chemical profile and antioxidant activity of peel of Yellowball, a novel citrus variety

  • Sun Lee;Seong-Ho Jo;Ji-Hyun An;Seong-man Jeong;Dong-Shin Kim;Sang Suk Kim;Suk Man Park;Su Hyun Yun;Seung-Gab Han;Hyun-Jin Kim
    • Food Science and Preservation
    • /
    • v.30 no.2
    • /
    • pp.235-246
    • /
    • 2023
  • Yellowball (Citrus hybrid cv. Yellowball ) is a new citrus hybrid between Haruka (C. tamurana × natsudaidai ) and Kiyomi (C. unshiu × sinensis) and is known to possess strong antioxidant activity. However, detailed information on the antioxidant components of its peel has not yet been reported. This study evaluated the antioxidant activity of the peel and identified the antioxidant components by fractionating a methanolic extract of Yellowball peels using liquid-liquid extraction with n-hexane, ethyl ether (ether), ethyl acetate (EA), butanol, and water. The phenolic contents and antioxidant activities of the n-hexane, ether, and EA fractions were higher than those of the other fractions, and these fractions were further separated by semi-preparative high-performance liquid chromatography (HPLC). Four antioxidant peaks, EA1, EA2, EA3, and He1, were isolated and analyzed using ultra-performance liquid chromatography-quadrupole-time- of-flight mass spectrometry (UPLC-Q-TOF MS). Sinapoyl glucoside and hesperidin were identified in EA2 and EA3, respectively, and a polymethoxylated flavone (PMF) complex (5-hydroxy-3,6,7,8,3',4'-hexamethoxyflavone, natsudaidain, tetrameth- oxyflavone, and tangeretin) was identified in He1. A compound in EA1 with m/z 223.0246 [M-H] could not be identified and was named unknown2. The antioxidant activity of unknown2 (IC50=69.17 ㎍/mL) was similar to that of Trolox, which was noted as a major antioxidant in Yellowball peel. Further studies on the antioxidant capacity of Yellowball peel are required; however, these results provide a foundation for using Yellowball peel as an antioxidant.