• Title/Summary/Keyword: Herbimycin A

Search Result 13, Processing Time 0.021 seconds

Effects of Protein Kinase Inhibitors on In Vitro Protein Phosphorylation and on Secondary Metabolism and Morphogenesis in Streptomyces coelicolor A3(2)

  • Hong, Soon-Kwang;Sueharu, Horinouchi
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.4
    • /
    • pp.325-332
    • /
    • 1998
  • In vitro phosphorylation experiments with a cell extract of Streptomyces coelicolor A3(2) M130 in the presence of ${\gamma}-[^32P]$]ATP revealed the presence of multiple phosphorylated proteins, including the AfsR/AfsK kinases which control the biosynthesis of A-factor, actinorhodin, and undecylprodigiosin. Phosphorylation of AfsR by a cell extract as an AfsK source was significantly inhibited by Ser/Thr protein kinase inhibitors, staurosporine and K-252a, at concentrations giving 50% inhibition ($IC_50$) of $1{\mu}M\;and\;0.1{\mu}M$, respectively. Further in vitro experiments with the cell extracts showed that phosphorylation of multiple proteins was inhibited by various protein kinase inhibitors with different inhibitory profiles. Manganese and calcium ions in the reaction mixture also modulate phosphorylation of multiple proteins. Manganese at 10 mM greatly enhanced the phosphorylation and partially circumvented the inhibition caused by staurosporine and K-252a. A calcium-activated protein kinase(s) was little affected by these inhibitors. Herbimycin and radicicol, which are known as tyrosine kinase inhibitors, did not show any significant inhibition of AfsR phosphorylation. Consistent with the in vitro effect of the kinase inhibitors, they inhibited aerial mycelium formation and pigmented antibiotic production on solid media. On the contrary, when assayed in liquid culture, the amount of actinorhodin produced was increased by staurosporine and K-252a and greatly decreased by manganese. All of these data clearly show that the genus Streptomyces possesses several protein kinases of eukaryotic types which are involved in the regulatory network for morphogenesis and secondary metabolism.

  • PDF

Regulatory Mechanism of Radiation-induced Cancer Cell Death by the Change of Cell Cycle (세포주기 변화에 타른 방사선 유도 암세포 사망의 조절기전)

  • Jeong Soo-Jin;Jeong Min-Ho;Jang Ji-Yeon;Jo Wol-Soon;Nam Byung-Hyouk;Jeong Min-Za;Lim Young-Jin;Jang Byung Gon;Youn Seon-Min;Lee Hyung Sik;Hur Won Joo;Yang Kwang Mo
    • Radiation Oncology Journal
    • /
    • v.21 no.4
    • /
    • pp.306-314
    • /
    • 2003
  • Purpose : In our Previous study, we have shown the main cel1 death pattern Induced by irradiation or protein tyrosine kinase (PTK) inhibitors in K562 human myeiogenous leukemic cell line. Death of the cells treated with irradiation alone was characterized by mitotic catastrophe and typical radiation-induced apoptosis was accelerated by herblmycin A (HMA). Both types of cell death were inhibited by genistein. In this study, we investigated the effects of HMA and genistein on cell cycle regulation and its correlation with the alterations of radiation-induced cell death. Materials and Methods: K562 cells In exponential growth phase were used for this study. The cells were Irradiated with 10 Gy using 6 MeV Linac (200-300 cGy/min). Immediately after irradiation, cells were treated with 250 nM of HMA or 25 $\mu$N of genistein. The distributions of cell cycle, the expressions of cell cycle-related protein, the activities of cyclin-dependent kinase, and the yield of senescence and differentiation were analyzed. Results: X-irradiated cells were arrested In the G2 phase of the cell cycle but unlike the p53-positive cells, they were not able to sustain the cell cycle arrest. An accumulation of cells in G2 phase of first ceil-cycle post-treatment and an increase of cyclin Bl were correlated with spontaneous, premature, chromosome condensation and mitotic catastrophe. HMA induced rapid G2 checkpoint abrogation and concomitant p53-independent Gl accumulation. HMA-induced cell cycle modifications correlated with the increase of CDK2 kinase activity, the decrease of the expressions of cyclins I and A and of CDK2 kinase activity, and the enhancement of radiation-induced apoptosis. Genistein maintained cells that were arrested in the G2-phase, decreased the expressions of cyclin Bl and cdc25c and cdc25C kinase activity, increased the expression of pl6, and sustained senescence and megakaryocytic differentiation. Conclusion: The effects of HMA and genistein on the radiation-induced cell death of KS62 cells were closely related to the cell cycle regulatory activities. In this study, we present a unique and reproducible model in which for investigating the mechanisms of various, radiation-induced, cancer cell death patterns. Further evaluation by using this model will provide a potent target for a new strategy of radiotherapy.

Effect of Endothelin-1 on Proliferation and Differentiation of Rat Tracheal Epithelial Cells

  • Kim, Chang-Soo;Oh, Sae-Ock;Woo, Jae-Suk;Jung, Jin-Sup;Kim, Yong-Keun;Lee, Sang-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.6
    • /
    • pp.763-770
    • /
    • 1998
  • A number of substances involved in the proliferation and differentiation of the tracheobronchial epithelium have been identified. The defects in the control of the proliferation and differentiation of tracheobronchial epithelial cells appear to constitute crucial steps in the transition of normal cells to neoplastic ones. Endothelin-1 is produced by tracheal epithelial cells, and its receptors are present in tracheal epithelial cells. However, the effect of endothelin-1 on the proliferation and differentiation of tracheal epithelial cells has not been clearly elucidated. This study was undertaken to investigate these actions of endothelin-1 in primary cultured cells of rat tracheal epithelia. Endothelin-1 stimulated proliferation of tracheal epithelial cells 1.5-fold when compared with that of control cells. Endothelin-1 increased mitogen-activated protein kinase (MAPK) activity. Herbimycin A, a tyrosine kinase inhibitor, inhibited endothelin-1-induced proliferation of epithelial cells. The treatment of endothelin-1 during the primary culture of tracheal epithelial cells increased AB-PAS-stained cell population and ciliated cell population 6.5 fold and 1.5 fold, respectively, when compared with those in control cells. The responsiveness to carbachol and forskolin in the $Cl^-$ secretion was increased 1.7 and 1.9 fold, respectively, in the endothelin-treated epithelial cells. These results indicated that endothelin-1 increases proliferation via MAPK pathway and stimulates differentiation to secretory and ciliated cells in rat tracheal epithelial cells.

  • PDF