• Title/Summary/Keyword: Herbal cigarette

Search Result 12, Processing Time 0.022 seconds

Safety Assessment of Mainstream Smoke of Herbal Cigarette

  • Bak, Jong Ho;Lee, Seung Min;Lim, Heung Bin
    • Toxicological Research
    • /
    • v.31 no.1
    • /
    • pp.41-48
    • /
    • 2015
  • Owing to the increase in price of cigarettes in Korea, herbal cigarettes have received increasing attention as a non-smoking aid; however, its safety has hardly been studied. We analyzed some of the toxic components in the mainstream smoke of herbal cigarettes, performed a mutagenicity test on smoke condensates for safety assessment, and compared the results with the corresponding values of a general cigarette with the same tar content. Herbal cigarette "A" was smoked using automatic smoking machine under ISO conditions in a manner similar to general cigarette "T". The tar content measured was higher than that inscribed on the outside of a package. The mainstream smoke of herbal cigarette "A" did not contain detectable levels of tobacco-specific nitrosamines and nicotine. Carbon monoxide and benzo(${\alpha}$)pyrene contents in herbal cigarette "A" were higher than those in the general cigarette "T". The phenolic contents such as hydroquinone, resorcinol, and catechol in herbal cigarette "A" were higher than those in the general cigarette "T", but cresol contents in herbal cigarette "A" were lower than those in the general cigarette "T". The content of aromatic amines such as 4-aminobiphenyl in herbal cigarette "A" was higher than that in the general cigarette "T"; however, this difference was not statistically significant. On the other hand, 1-aminonaphthalene, 2-aminonaphthalene, and 3-aminobiphenyl contents in herbal cigarette "A" were lower than those in the general cigarette "T". The smoke condensates of herbal cigarette "A" exhibited a higher mutagenic potential than the condensates from the general cigarette "T" at the same concentration. We concluded that the mainstream smoke of herbal cigarette contains some toxic components, the smoke condensates of herbal cigarettes are mutagenic similar to general cigarette because of combustion products, and that the evaluation of the chemical and biological safety of all types of herbal cigarettes available on the market.

Inhalation Toxicity Study of H Menthol (Nicotine Free-Tobacco Free) Herbal Cigarettes (H Menthol (Nicotine Free-Tobacco Free) Herbal Cigarette의 흡입독성시험)

  • 강경선;조성대;조종호;김경배;이지해;안남식;정지원;양세란;박준석
    • Environmental Mutagens and Carcinogens
    • /
    • v.22 no.2
    • /
    • pp.97-105
    • /
    • 2002
  • Nowadays a huge variety of products that aim to assist to quit smoking or reduce addictive symptoms are developed and manufactured with safety evaluation, but the safety of the most recent products of interest which do not contain tobacco and nicotine, and shape cigarettes is not evaluated and guaranteed relatively. This study was carried out to evaluate the single and repeated dose inhalation toxicity and genotoxicity of H menthol (Nicotine free-tobacco free) herbal cigarettes provided by Cigastop Ltd. in ICR mice. In this study, doses which we determined to expose to mice were 40 cigarettes for 6 hours a day to mice in single dose and 20 (high dose), 10 (middle dose) and 5 cigarettes (low dose) a day for 28 days in repeated dose inhalation toxicity, in vivo chromosome aberration test and micronucleus test. The particulate substances from H menthol herbal cigarettes also were gathered and used in the Salmonella typhimurium/microsome assay (Salmonella test; Ames test). We could find neither significant changes between control and treatment groups nor dose-response effects of test material at all except serum Ca level of female middle dose treatment group in repeated dose inhalation toxicity test. In conclusion, H menthol herbal cigarettes, when applied clinically intended dose we used, might not show any toxic and/or mutagenic effect.

  • PDF

HemoHIM, A herbal preparation, alleviates airway inflammation caused by cigarette smoke and lipopolysaccharide

  • Shin, Na-Rae;Kim, Sung-Ho;Ko, Je-Won;Park, Sung-Hyeuk;Lee, In-Chul;Ryu, Jung-Min;Kim, Jong-Choon;Shin, In-Sik
    • Laboraroty Animal Research
    • /
    • v.33 no.1
    • /
    • pp.40-47
    • /
    • 2017
  • HemoHIM, herbal preparation has designed for immune system recovery. We investigated the anti-inflammatory effect of HemoHIM on cigarette smoke (CS) and lipopolysaccharide (LPS) induced chronic obstructive pulmonary disease (COPD) mouse model. To induce COPD, C57BL/6 mice were exposed to CS for 1 h per day (eight cigarettes per day) for 4 weeks and intranasally received LPS on day 26. HemoHIM was administrated to mice at a dose of 50 or 100 mg/kg 1h before CS exposure. HemoHIM reduced the inflammatory cell count and levels of tumor necrosis factor receptor (TNF)-${\alpha}$, interleukin (IL)-6 and IL-$1{\beta}$ in the broncho-alveolar lavage fluid (BALF) induced by CS+LPS exposure. HemoHIM decreased the inflammatory cell infiltration in the airway and inhibited the expression of iNOS and MMP-9 and phosphorylation of Erk in lung tissue exposed to CS+LPS. In summary, our results indicate that HemoHIM inhibited a reduction in the lung inflammatory response on CS and LPS induced lung inflammation via the Erk pathway. Therefore, we suggest that HemoHIM has the potential to treat pulmonary inflammatory disease such as COPD.

Lonicerae Flos Inhibits Cigarette-induced Lung Inflammatory Responses in Animal Model of Chronic Obstructive Pulmonary Disease

  • Jung, Kyung-Hwa;Lee, Kye Seok;Kim, Youngeun;Park, Soojin;Hong, Moochang;Shin, Minkyu;Bae, Hyunsu
    • The Journal of Korean Medicine
    • /
    • v.34 no.2
    • /
    • pp.10-19
    • /
    • 2013
  • Objectives: In the present study, we evaluate the anti-inflammatory effect of Lonicerae Flos on cigarette-induced lung inflammatory responses in animal model of chronic obstructive pulmonary diseases (COPD). Methods: To inspect the effects of Lonicerae Flos, we evaluated Lonicerae Flos functions in vivo including immune cell profiles in bronchoalveolar lavage (BAL) fluid, cytokine production and tissue morphological changes. Results: Lonicerae Flos significantly inhibited immune cell infiltrations into the BAL fluid (neutrophils, macrophages, lymphocytes). TNF-${\alpha}$, and interleukin-6 (IL-6) were substantially decreased in the BAL fluid of Lonicerae Flos-treated mice compared with cigarette-exposed control mice. In addition, the hypertrophy of goblet cells in the epithelial cells was reduced in both Lonicerae Flos- and roflumilast-treated mice. Conclusions: The results of this study provide evidence that treatment with Lonicerae Flos exerts strong therapeutic effects against cigarette-induced lung inflammation in vivo. Therefore, this herbal medicine may represent a novel therapeutic agent for lung inflammation in general, as well as a specific agent for the treatment of COPD.

Effects of GHX02 on Chronic Obstructive Pulmonary Disease Mouse Model

  • Yang, Won-Kyung;Lyu, Yee Ran;Kim, Seung-Hyung;Park, Yang Chun
    • The Journal of Korean Medicine
    • /
    • v.39 no.4
    • /
    • pp.126-135
    • /
    • 2018
  • Objectives: Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation and irreversible airflow. This study aimed to evaluate the effects of GHX02 in a COPD-induced mouse model. Methods: The COPD mouse model was established by exposure to cigarette smoke extract and lipopolysaccharide which were administered by intratracheal injection three times with a 7 day interval. GHX02 (100, 200, 400 mg/kg) and all other drugs were orally administrated for 14 days from Day 7 to Day 21. Results: GHX02 significantly decreased the neutrophil counts in bronchoalveolar lavage fluid (BALF) and the number of $CD4^+$, $CD8^+$, $CD69^+$, and $CD11b^+/GR1^+$ cells in BALF and lung cells. GHX02 also suppressed the secretion of tumor necrosis factor-alpha ($TNF-{\alpha}$), interleukin-17A, macrophage inflammatory protein 2 (MIP2), and chemokine (C-X-C motif) ligand 1 (CXCL-1) in BALF and ameliorated the lung pathological changes. Conclusions: Thus, GHX02 effectively inhibited airway inflammation by inhibiting migration of inflammatory cells and expression of pro-inflammatory cytokines. Therefore, GHX02 may be a promising therapeutic agent for COPD.

Effect of the Establishment of Cigarette Beetle Population on the Quality of Stored Cnidium Rhizome and Angelica Radix at Room Temperature (상온보관에 따른 권연벌레의 번식이 한약재 천궁, 당귀의 품질에 미치는 영향)

  • Kim, Yong Il;Lee, Sang Won;Kim, Yae Jin;An, Tae Jin;Kim, Young Guk;Chang, Jae Ki;Kim, Jin Won
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.4
    • /
    • pp.224-230
    • /
    • 2017
  • Background: The current regulations regarding the storage of medicinal herbs do not define the storage temperature; instead, but the only requirement is that the plastic bags used for storing the medicinal herbs should be tightly sealed during storage. The practice of storing medicinal herbs at room temperature ($28^{\circ}C$), causes many problems, including growth of insect pests on the stored medicinal herbs. Thus, it is necessary to understand the effect of insect pests on the quality of medicinal herbs stored at room temperature ($28^{\circ}C$) for the improving the relevant regulations. Methods and Results: Cnidium rhizome and Angelica radix were infested with Lasioderma serricorne F. adults and incubated at $28^{\circ}C$ for 2.5 and 5 months. The population of L. serricorne was established rapidly, and left many holes, cadavers, and feces on the stored medicinal herbs, thereby greatly damaging the product appearance and hygiene. In addition, active ingredients of the medicinal herbs were significantly decreased, probably reducing their medicinal quality as well. Conclusions: These results indicate that the current regulations are not sufficient to prevent the establishment of storage insect pests and guarantee the quality and hygiene of stored medicinal herbs. Therefore, it is necessary to devise proper storage protocols and upgrade the current relevant regulations to maintain the quality of medicinal herbs during storage.

INHALATION TOXICITY STUDY ON H MENTHOL(NICOTINE FREE-TOBACCO FREE) HERBAL CIGARETTES

  • Jung, Ji-Won;Cho, Sung-Dae;Ahn, Nam-Shik;Park, Joon-Suk;Tiep, Nguyen-Ba;Lee, Yong-Soon;Kang, Kyung-Sun
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.05a
    • /
    • pp.135-135
    • /
    • 2002
  • Nowadays a huge variety of products that aim to assist to quit smoking or reduce addictive symptoms are developed and manufactured with safety evaluation, but the safety of the most recent products of interest which do not contain tobacco and nicotine, and shape cigarettes is not evaluated and guaranteed relatively.(omitted)

  • PDF

Effect of Pyunkang-tang on Inflammatory Aspects of Chronic Obstructive Pulmonary Disease in a Rat Model

  • Seo, Hyo-Seok;Lee, Hyun Jae;Lee, Choong Jae
    • Natural Product Sciences
    • /
    • v.25 no.2
    • /
    • pp.103-110
    • /
    • 2019
  • We investigated the anti-inflammatory effect of Pyunkang-tang extract (PGT), a complex herbal extract based on traditional Chinese medicine that is used in Korea for controlling diverse pulmonary diseases, on cigarette smoke-induced pulmonary pathology in a rat model of chronic obstructive pulmonary disease (COPD). The constituents of PGT were Lonicerae japonica, Liriope platyphylla, Adenophora triphilla, Xantium strumarinum, Selaginella tamariscina and Rehmannia glutinosa. Rats were exposed by inhalation to a mixture of cigarette smoke extract (CSE) and sulfur dioxide for three weeks to induce COPD-like pulmonary inflammation. PGT was administered orally to rats and pathological changes to the pulmonary system were examined in each group of animals through measurement of tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and interleukin-6 (IL-6) levels in bronchoalveolar lavage fluid (BALF) at 21 days post-CSE treatment. The effect of PGT on the hypersecretion of pulmonary mucin in rats was assessed by quantification of the amount of mucus secreted and by examining histopathologic changes in tracheal epithelium. Confluent NCI-H292 cells were pretreated with PGT for 30 min and then stimulated with CSE plus PMA (phorbol 12-myristate 13-acetate), for 24 h. The MUC5AC mucin gene expression was measured by RT-PCR. Production of MUC5AC mucin protein was measured by ELISA. The results were as follows: (1) PGT inhibited CSE-induced pulmonary inflammation as shown by decreased TNF-${\alpha}$ and IL-6 levels in BALF; (2) PGT inhibited the hypersecretion of pulmonary mucin and normalized the increased amount of mucosubstances in goblet cells of the CSE-induced COPD rat model; (3) PGT inhibited CSE-induced MUC5AC mucin production and gene expression in vitro in NCI-H292 cells, a human airway epithelial cell line. These results suggest that PGT might regulate the inflammatory aspects of COPD in a rat model.

Effects of Sagan-tang and individual herbs on COPD Mice Model (만성폐쇄성폐질환 동물모델에 대한 射干湯 및 구성약물의 효과)

  • Han, Jong-Min;Yang, Won-Kyung;Kim, Seung-Hyeong;Park, Yang-Chun
    • Herbal Formula Science
    • /
    • v.23 no.2
    • /
    • pp.171-187
    • /
    • 2015
  • Objective This study aimed to evaluate the effects of Sagan-tang (SGT) on COPD mouse model. Methods The study was carried out by two ways (in vitro, in vivo). In vitro RAW264.7 cells (mouse macrophage) were used and analysed by flow cytometry, ELISA, Western blot. In vivo LPS and CSS challenged mice were used and its BALF had been analysed by cytospin image, FACS, ELISA, lung tissue by real-time PCR. Results In vitro, SGT maintained 80-100% rate of viablilty on 10 ~ 500 ㎍/㎖ concentration. In ELISA analysis with RAW264.7 cells, SGT significantly decreased NO over 30 ㎍/㎖. In flow cytometry, SGT 100 ㎍/㎖ dosage group displayed a tendency for decrease ROS. In Western blot analysis, SGT 100 ㎍/㎖ dosage group decreased NF-κB. In ELISA analysis, SGT significantly decreased TNF-α, IL-6 over 200 ㎍/㎖. In vivo SGT 200 ㎎/㎏ dosage group, application of SGT significantly decreased increase of neutrophils, TNF-α, IL-6 in BALF, muc5AC, TGF-β, TNF-α, expression of mRNA in lung tissue and histological lung injury. Conclusion This Study suggests usability of SGT for COPD patients by controlling lung tissue injury.