• Title/Summary/Keyword: Hepatic protein synthesis

Search Result 60, Processing Time 0.026 seconds

Vitamin A Improves Hyperglycemia and Glucose-Intolerance through Regulation of Intracellular Signaling Pathways and Glycogen Synthesis in WNIN/GR-Ob Obese Rat Model.

  • Jeyakumar, Shanmugam M.;Sheril, Alex;Vajreswari, Ayyalasomayajula
    • Preventive Nutrition and Food Science
    • /
    • v.22 no.3
    • /
    • pp.172-183
    • /
    • 2017
  • Vitamin A and its metabolites modulate insulin resistance and regulate stearoyl-CoA desaturase 1 (SCD1), which are also known to affect insulin resistance. Here, we tested, whether vitamin A-mediated changes in insulin resistance markers are associated with SCD1 regulation or not. For this purpose, 30-week old male lean and glucose-intolerant obese rats of WNIN/GR-Ob strain were given either a stock or vitamin A-enriched diet, i.e. 2.6 mg or 129 mg vitamin A/kg diet, for 14 weeks. Compared to the stock diet, vitamin A-enriched diet feeding improved hyperglycemia and glucose-clearance rate in obese rats and no such changes were seen in lean rats receiving identical diets. These changes were corroborated with concomitant increase in circulatory insulin and glycogen levels of liver and muscle (whose insulin signaling pathway genes were up-regulated) in obese rats. Further, the observed increase in muscle glycogen content in these obese rats could be explained by increased levels of the active form of glycogen synthase, the key regulator of glycogen synthesis pathway, possibly inactivated through increased phosphorylation of its upstream inhibitor, glycogen synthase kinase. However, the unaltered hepatic SCD1 protein expression (despite decreased mRNA level) and increased muscle-SCD1 expression (both at gene and protein levels) suggest that vitamin A-mediated changes on glucose metabolism are not associated with SCD1 regulation. Chronic consumption of vitamin A-enriched diet improved hyperglycemia and glucose-intolerance, possibly, through the regulation of intracellular signaling and glycogen synthesis pathways of muscle and liver, but not associated with SCD1.

Biochemical Studies of Ginseng Saponin on RNA and Protein Biosynthesis in the Rat Liver (간에서의 RNA, 단백질 생합성에 미치는 인삼성분의 생화학적 연구)

  • Oura Hikokichi
    • Proceedings of the Ginseng society Conference
    • /
    • 1988.08a
    • /
    • pp.1-10
    • /
    • 1988
  • Previously. we reported that the intraperitoneal administration of ginseng crude saponin increased: (I) nuclear RNA polymerase activity. (2) nuclear RNA synthesis. (3) cytoplasmic RNA synthesis. (4) cytoplasmic heavy polyrioosome content. (5) amino acid incorporation in vitro of microsome and polysome isolated rat liver. and (6) the incorporation rate of labeled amino acids into serum protein. In addition, a spectacular increase in the rough endoplasmic reticulum of hepatocyte administered crude saponin for four weeks orally was shown through electron microscopy. An increase in polysomal content in membrane-hound ribosome was shown through ultracentrifugation. Recently, successive intraperitoneal. administration .of $ginsenosid-Rb_2$ was given to streptozotocin (STZ) diaoetic rats of hypoproteinemia. The blood urea nitrogen and hepatic urea concentration were decreased significantly. The total protein and alhumin levels in the serum were increased in comparison to control values. In contrast. the $ginsenoside-Rb_2$ treated group of STZ diahetic rats showed a significant increase in liver RNA. total ribosome and membrane-bound ribosomal contents. The administration of $ginsenoside-Rb_2$ increased the incorporation rate of labeled - precursor into total serum protein. Additionally $ginsenoside-Rb_2$ improved the nitrogen balance of diabetic rats. On the bases of these experimental results, ginseng saponin has a metabolic stimulatory or anabolic action on RNA and protein synthesis.

  • PDF

CD38 Inhibition Protects Fructose-Induced Toxicity in Primary Hepatocytes

  • Soo-Jin Lee;Sung-E Choi;Seokho Park;Yoonjung Hwang;Youngho Son;Yup Kang
    • Molecules and Cells
    • /
    • v.46 no.8
    • /
    • pp.496-512
    • /
    • 2023
  • A fructose-enriched diet is thought to contribute to hepatic injury in developing non-alcoholic steatohepatitis (NASH). However, the cellular mechanism of fructose-induced hepatic damage remains poorly understood. This study aimed to determine whether fructose induces cell death in primary hepatocytes, and if so, to establish the underlying cellular mechanisms. Our results revealed that treatment with high fructose concentrations for 48 h induced mitochondria-mediated apoptotic death in mouse primary hepatocytes (MPHs). Endoplasmic reticulum stress responses were involved in fructose-induced death as the levels of phosho-eIF2α, phospho-C-Jun-N-terminal kinase (JNK), and C/EBP homologous protein (CHOP) increased, and a chemical chaperone tauroursodeoxycholic acid (TUDCA) prevented cell death. The impaired oxidation metabolism of fatty acids was also possibly involved in the fructose-induced toxicity as treatment with an AMP-activated kinase (AMPK) activator and a PPAR-α agonist significantly protected against fructose-induced death, while carnitine palmitoyl transferase I inhibitor exacerbated the toxicity. However, uric acid-mediated toxicity was not involved in fructose-induced death as uric acid was not toxic to MPHs, and the inhibition of xanthine oxidase (a key enzyme in uric acid synthesis) did not affect cell death. On the other hand, treatment with inhibitors of the nicotinamide adenine dinucleotide (NAD)+-consuming enzyme CD38 or CD38 gene knockdown significantly protected against fructose-induced toxicity in MPHs, and fructose treatment increased CD38 levels. These data suggest that CD38 upregulation plays a role in hepatic injury in the fructose-enriched diet-mediated NASH. Thus, CD38 inhibition may be a promising therapeutic strategy to prevent fructose-enriched diet-mediated NASH.

Clinical Phenotypes and Dietary Management of Hepatic Glycogen Storage Disease Type 0 (간 0형 당원축적병의 임상 표현형과 식사관리)

  • Young-Lim Shin
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.23 no.2
    • /
    • pp.8-14
    • /
    • 2023
  • The hepatic glycogen storage disease type 0 (GSD type 0) is an autosomal recessive disorder caused by a deficiency of hepatic glycogen synthase encoded by the glycogen synthase 2 (GYS2) gene, leading to abnormal synthesis glycogen. The clinical findings of GSD type 0 are hyperketotic hypoglycemia at fasting state and accompanying postprandial hyperglycemia and hyperlactatemia. GSD type 0 has only been reported in a very small number so far, and the diagnosis is likely to be missed because symptoms are mild, severe hypoglycemia is rare or asymptomatic, or symptoms gradually disappear with age. Essential management strategies include feeding high-protein meals to stimulate gluconeogenesis, frequent meals to prevent hypoglycemia during the day and feeding complex carbohydrates such as uncooked cornstarch to slowly release glucose during nignt. GSD type 0 has a good prognosis, with appropriate treatment, normal growth can be achieved and no complications occur. Significant hypoglycemia occurs less common in adulthood, but ongoing dietary management may be necessary.

  • PDF

Protective Effects of Korean Red Ginseng against Alcohol-induced Hepatosteatosis (알코올에 의해 유발된 지방변성증에서 홍삼의 보호효과)

  • Kim, Sun Ju;Ki, Sung Hwan;Lee, Sangkyu
    • Journal of Life Science
    • /
    • v.25 no.3
    • /
    • pp.317-322
    • /
    • 2015
  • Alcohol-induced fatty liver (steatosis) results from excessive generation of reducing equivalents by ethanol metabolism. Generally, chronic ethanol treatment causes hepatosteatosis by regulating sterol regulatory element-binding protein 1c (SREBP-1c), which increases the synthesis of hepatic lipids. The effect of ethanol on SREBP-1c is mediated through mammalian sirtuin-1 (SIRT-1), a NAD+-dependent protein deacetylase that regulates hepatic lipid metabolism. Ginseng is a widely used herbal medicine that is used in Asia for its anti-diabetes and anti-obesity effects. The pharmacological and therapeutic effects of ginseng are primarily produced by bioactive constituents known as ginsenosides. Here, we examined the regulatory effects of Korean red ginseng (KRG) extracts on SREBP-1c and SIRT-1 on lipid homeostasis in AML-12 mouse hepatocytes. AML-12 cells were treated with ethanol and/or KRG extracts (0 - 1,000 μg/ml). Lipid droplets were assayed using Oil red O staining, and western blotting was used to measure SIRT-1 and SREBP-1 expression. Treatment with KRG extracts restored SIRT-1 expression and reduced SREBP-1c expression in ethanol-treated cells. We also showed that KRG extract and ginsenosides Rb2 and Rd significantly decreased SREBP-1 acetylation in ethanol-treated cells. These results show that treatment with KRG extract and its active ginsenoside constituents Rb2 and Rd protected against alcohol-related hepatosteatosis via regulation of SIRT-1 and downstream acetylation of SREBP-1c, which altered hepatic lipid metabolism.

The molecular mechanism of propionate-regulating gluconeogenesis in bovine hepatocytes

  • Rui Pang;Xiao Xiao;Tiantian Mao;Jiajia Yu;Li Huang;Wei Xu;Yu Li;Wen Zhu
    • Animal Bioscience
    • /
    • v.36 no.11
    • /
    • pp.1693-1699
    • /
    • 2023
  • Objective: Cows that are nursing get around 80% of their glucose from liver gluconeogenesis. Propionate, a significant precursor of liver gluconeogenesis, can regulate the key genes involved in hepatic gluconeogenesis expression, but its precise effects on the activity of enzymes have not yet been fully elucidated. Therefore, the aim of this study was to investigate the effects of propionate on the activity, gene expression, and protein abundance of the key enzymes involved in the gluconeogenesis of dairy cow hepatocytes. Methods: The hepatocytes were cultured and treated with various concentrations of sodium propionate (0, 1.25, 2.50, 3.75, and 5.00 mM) for 12 h. Glucose content in the culture media was determined by an enzymatic coloring method. The activities of gluconeogenesis related enzymes were determined by enzyme linked immunosorbent assay kits, and the levels of gene expression and protein abundance of the enzymes were detected by real-time quantitative polymerase chain reaction and Western blot, respectively. Results: Propionate supplementation considerably increased the amount of glucose in the culture medium compared to the control (p<0.05); while there was no discernible difference among the various treatment concentrations (p>0.05). The activities of cytoplasmic phosphoenolpyruvate carboxylase (PEPCK1), mitochondrial phosphoenolpyruvate carboxylase (PEPCK2), pyruvate carboxylase (PC), and glucose-6-phosphatase (G6PC) were increased with the addition of 2.50 and 3.75 mM propionate; the gene expressions and protein abundances of PEPCK1, PEPCK2, PC, and G6PC were increased by 3.75 mM propionate addition. Conclusion: Propionate encouraged glucose synthesis in bovine hepatocytes, and 3.75 mM propionate directly increased the activities, gene expressions and protein abundances of PC, PEPCK1, PEPCK2, and G6PC in bovine hepatocytes, providing a theoretical basis of propionate-regulating gluconeogenesis in bovine hepatocytes.

Effects of ingredients of Korean brown rice cookies on attenuation of cholesterol level and oxidative stress in high-fat diet-fed mice

  • Hong, Sun Hee;Kim, Mijeong;Woo, Minji;Song, Yeong Ok
    • Nutrition Research and Practice
    • /
    • v.11 no.5
    • /
    • pp.365-372
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Owing to health concerns related to the consumption of traditional snacks high in sugars and fats, much effort has been made to develop functional snacks with low calorie content. In this study, a new recipe for Korean rice cookie, dasik, was developed and its antioxidative, lipid-lowering, and anti-inflammatory effects and related mechanisms were elucidated. The effects were compared with those of traditional rice cake dasik (RCD), the lipid-lowering effect of which is greater than that of traditional western-style cookies. MATERIALS/METHODS: Ginseng-added brown rice dasik (GBRD) was prepared with brown rice flour, fructooligosaccharide, red ginseng extract, and propolis. Mice were grouped (n = 7 per group) into those fed a normal AIN-76 diet, a high-fat diet (HFD), and HFD supplemented with RCD or GBRD. Dasik in the HFD accounted for 7% of the total calories. The lipid, reactive oxygen species, and peroxynitrite levels, and degree of lipid peroxidation in the plasma or liver were determined. The expression levels of proteins involved in lipid metabolism and inflammation, and those of antioxidant enzymes were determined by western blot analysis. RESULTS: The plasma and hepatic total cholesterol concentrations in the GBRD group were significantly decreased via downregulation of sterol regulatory element-binding protein-2 and 3-hydroxy-3-methylglutaryl-CoA reductase (P < 0.05). The hepatic peroxynitrite level was significantly lower, whereas glutathione was higher, in the GBRD group than in the RCD group. Among the antioxidant enzymes, catalase (CAT) and glutathione peroxidase (GPx) were significantly upregulated in the GBRD group (P < 0.05). In addition, nuclear factor-kappaB (NF-${\kappa}B$) expression in the GBRD group was significantly lower than that in the RCD group. CONCLUSIONS: GBRD decreases the plasma and hepatic cholesterol levels by downregulating cholesterol synthesis. This new dasik recipe also improves the antioxidative and anti-inflammatory status in HFD-fed mice via CAT and GPx upregulation and NF-${\kappa}B$ downregulation. These effects were significantly higher than those of RCD.

Metabolic Characteristic of the Liver of Dairy Cows during Ketosis Based on Comparative Proteomics

  • Xu, Chuang;Wang, Zhe;Liu, Guowen;Li, Xiaobing;Xie, Guanghong;Xia, Cheng;Zhang, Hong You
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.7
    • /
    • pp.1003-1010
    • /
    • 2008
  • The objective of the present study was to identify differences in the expression levels of liver proteins between healthy and ketotic cows, establish a liver metabolic interrelationship of ketosis and elucidate the metabolic characteristics of the liver during ketosis. Liver samples from 8 healthy multiparous Hostein cows and 8 ketotic cows were pooled by health status and the proteins were separated by two-dimensional-electrophoresis (2D-E). Statistical analysis of gels was performed using PDQuest software 8.0. The differences in the expression levels of liver proteins (p<0.05) between ketotic and healthy cows were identified by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF-TOF) tandem mass spectrometry. Five enzymes/proteins were identified as being differentially expressed in the livers of ketotic cows: expression of 3-hydroxyacyl-CoA dehydrogenase type-2 (HCDH), acetyl-coenzyme A acetyltransferase 2 (ACAT) and elongation factor Tu (EF-Tu) were down-regulated, whereas that of alpha-enolase and creatine kinase were up-regulated. On the basis of this evidence, it could be presumed that the decreased expression of HCDH, which is caused by high concentrations of acetyl-CoA in hepatic cells, in the livers of ketotic cows, implies reduced fatty acid ??oxidation. The resultant high concentrations of acetyl-CoA and acetoacetyl CoA would depress the level of ACAT and generate more ??hydroxybutyric acid; high concentrations of acetyl-CoA would also accelerate the Krebs Cycle and produce more ATP, which is stored as phosphocreatine, as a consequence of increased expression of creatine kinase. The low expression level of elongation factor Tu in the livers of ketotic cows indicates decreased levels of protein synthesis due to the limited availability of amino acids, because the most glucogenic amino acids sustain the glyconeogenesis pathway; thus increasing the level of alpha-enolase. Decreased protein synthesis also promotes the conversion of amino acids to oxaloacetate, which drives the Krebs Cycle under conditions of high levels of acetyl-CoA. It is concluded that the livers of ketotic cows possess high concentrations of acetyl-CoA, which through negative feedback inhibited fatty acid oxidation; show decreased fatty acid oxidation, ketogenesis and protein synthesis; and increased gluconeogenesis and energy production.

Downregulation of Hepatic De Novo Lipogenesis and Adipogenesis in Adipocytes by Pinus densiflora Bark Extract

  • Ahn, Hyemyoung;Jeong, Jeongho;Moyo, Knowledge Mudhibadi;Ryu, Yungsun;Min, Bokkee;Yun, Seong Ho;Kim, Hwa Yeon;Kim, Wooki;Go, Gwang-woong
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.11
    • /
    • pp.1925-1931
    • /
    • 2017
  • Korean red pine (Pinus densiflora) bark extract, PineXol (PX), was investigated for its potential antioxidant and anti-inflammation effects in vitro. It was hypothesized that PX treatment ($25-150{\mu}g/ml$) would reduce the lipid synthesis in HepG2 hepatocytes as well as lipid accumulation in 3T3-L1 adipocytes. Hepatocytes' intracellular triglycerides and cholesterol were decreased in the PX $150{\mu}g/ml$ treatment group compared with the control (p < 0.05). Consequently, de novo lipogenic proteins (acetyl-CoA carboxylase 1, stearoyl-CoA desaturase 1, elongase of very long chain fatty acids 6, glycerol-3-phosphate acyltransferase 1, and sterol regulatory element-binding protein 1) were significantly decreased in hepatocytes by PX $150{\mu}g/ml$ treatment compared with the control (p < 0.05). In differentiated 3T3-L1 adipocytes, the lipid accumulation was significantly attenuated by all PX treatments (p < 0.01). Regulators of adipogenesis, including CCAAT-enhancer-binding proteins alpha, peroxisome proliferatoractivated receptor gamma, and perilipin, were decreased in PX $100{\mu}g/ml$ treatment compared with the control (p < 0.05). In conclusion, PX might have anti-obesity effects by blocking hepatic lipogenesis and by inhibiting adipogenesis in adipocytes.

Deficiency or activation of peroxisome proliferator-activated receptor α reduces the tissue concentrations of endogenously synthesized docosahexaenoic acid in C57BL/6J mice

  • Hsiao, Wen-Ting;Su, Hui-Min;Su, Kuan-Pin;Chen, Szu-Han;Wu, Hai-Ping;You, Yi-Ling;Fu, Ru-Huei;Chao, Pei-Min
    • Nutrition Research and Practice
    • /
    • v.13 no.4
    • /
    • pp.286-294
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: Docosahexaenoic acid (DHA), an n-3 long chain polyunsaturated fatty acid (LCPUFA), is acquired by dietary intake or the in vivo conversion of ${\alpha}$-linolenic acid. Many enzymes participating in LCPUFA synthesis are regulated by peroxisome proliferator-activated receptor alpha ($PPAR{\alpha}$). Therefore, it was hypothesized that the tissue accretion of endogenously synthesized DHA could be modified by $PPAR{\alpha}$. MATERIALS/METHODS: The tissue DHA concentrations and mRNA levels of genes participating in DHA biosynthesis were compared among $PPAR{\alpha}$ homozygous (KO), heterozygous (HZ), and wild type (WT) mice (Exp I), and between WT mice treated with clofibrate ($PPAR{\alpha}$ agonist) or those not treated (Exp II). In ExpII, the expression levels of the proteins associated with DHA function in the brain cortex and retina were also measured. An n3-PUFA depleted/replenished regimen was applied to mitigate the confounding effects of maternal DHA. RESULTS: $PPAR{\alpha}$ ablation reduced the hepatic Acox, Fads1, and Fads2 mRNA levels, as well as the DHA concentration in the liver, but not in the brain cortex. In contrast, $PPAR{\alpha}$ activation increased hepatic Acox, Fads1, Fads2, and Elovl5 mRNA levels, but reduced the DHA concentrations in the liver, retina, and phospholipid of brain cortex, and decreased mRNA and protein levels of the brain-derived neurotrophic factor in brain cortex. CONCLUSIONS: LCPUFA enzyme expression was altered by $PPAR{\alpha}$. Either $PPAR{\alpha}$ deficiency or activation-decreased tissue DHA concentration is a stimulus for further studies to determine the functional significance.