• 제목/요약/키워드: Hepatic gene expression

검색결과 216건 처리시간 0.03초

Different Regulation of p53 Expression by Cadmium Exposure in Kidney, Liver, Intestine, Vasculature, and Brain Astrocytes

  • Lee, Jin-Yong;Tokumoto, Maki;Hattori, Yuta;Fujiwara, Yasuyuki;Shimada, Akinori;Satoh, Masahiko
    • Toxicological Research
    • /
    • 제32권1호
    • /
    • pp.73-80
    • /
    • 2016
  • Chronic exposure to cadmium (Cd) is known to adversely affect renal function. Our previous studies indicated that Cd induces p53-dependent apoptosis by inhibiting gene expression of the ubiquitin-conjugating enzyme (Ube) 2d family in both human and rat proximal tubular cells. In this study, the effects of Cd on protein expression of p53 and apoptotic signals in the kidney and liver of mice exposed to Cd for 12 months were examined, as well as the effects of Cd on p53 protein levels and gene expression of the Ube2d family in various cell lines. Results showed that in the kidney of mice exposed to 300 ppm Cd for 12 months, there was overaccumulation of p53 proteins in addition to the induction of apoptosis, which was triggered specifically in the proximal tubules. Interestingly, the site of apoptosis was the same as that of p53 accumulation in the proximal tubules. In the liver of mice chronically exposed to Cd, gene expression of the Ube2d family tended to be slightly decreased, together with slight apoptosis without the accumulation of p53 protein. In rat small intestine epithelial (IEC-6) cells, Cd decreased not only the p53 protein level but also gene expression of Ube2d1, Ube2d2 and Ube2d4. In human brain microvascular endothelial cells (HBMECs), Cd did not suppress gene expression of the Ube2d family, but increased the p53 protein level. In human brain astrocytes (HBASTs), Cd only increased gene expression of UBE2D3. These results suggest that Cd-induced apoptosis through p53 protein is associated with renal toxicity but not hepatic toxicity, and the modification of p53 protein by Cd may vary depending on cell type.

고콜레스테롤 식이 섭취 쥐에서 quercetin의 간 AMPK 및 microRNA-21 조절을 통한 지질대사 개선 효과 (Effects of quercetin on the improvement of lipid metabolism through regulating hepatic AMPK and microRNA-21 in high cholesterol diet-fed mice)

  • 이막순;김양하
    • Journal of Nutrition and Health
    • /
    • 제55권1호
    • /
    • pp.36-46
    • /
    • 2022
  • Quercetin의 지질대사 개선 효과에 대한 작용기전을 확인하기 위해 C57BL/6J mouse를 사용하여 실험을 수행하였다. 고콜레스테롤혈증을 유도하기 위해 6주간 1% 콜레스테롤과 0.5% cholic acid를 함유하는 고콜레스테롤 식이를 급여하였으며, quercetin은 0.05%와 0.1%의 수준으로 고콜레스테롤 식이에 추가하여 같은 기간 동안 제공하였다. Quercetin은 혈청과 간의 중성지방 및 콜레스테롤 수준을 용량 의존적으로 감소하는 것으로 나타났다. 고콜레스테롤 식이를 섭취한 쥐의 간에서 지방 합성을 촉진하는 SREBP-1c, ACC1 및 FAS 유전자 발현이 quercetin 섭취에 의해 억제되는 것을 확인하였다. Quercetin은 간세포 내에서 에너지 대사를 조절하는 AMPK 활성을 증가시켰다. 이에 반해 암세포 증식을 촉진하고 지방간에서 높게 발현되는 miR-21 발현은 quercetin 섭취에 의해 감소되었다. 본 연구의 결과는 quercetin이 고콜레스테롤 식이 섭취 쥐에서 혈청과 간의 지질 수준을 낮추는 지질대사 개선 효과가 있으며, 이러한 효과의 일부는 간 내 지방합성 유전자 (SREBP-1c, ACC1 및 FAS) 발현, AMPK 활성 및 miR-21 조절을 통해 매개된다는 것을 시사한다.

Reduction of Dioxin-Induced Expression of cyplal Gene through Repression of AhR/Arnt DNA Binding by Mek-1 inhibitor PD98059

  • Park, Hyunsung
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2002년도 Molecular and Cellular Response to Toxic Substances
    • /
    • pp.60-66
    • /
    • 2002
  • Aryl hydrocarbons, environmental contaminants accumulate in tissue and pose potential risk in human health. 2,3,7,8-Tertachlorodibenzo-p-dioxin (TCDD) is known as a most potent toxicant among aryl hydrocarbons. TCDD elicits numerous toxic responses in experimental animals and human, including hepatic carcinoma, pulmonary and skin tumor in adult rodents, craniofacial abnormality during mouse embryogenesis, chloracne, reproductive abnormality, immunotoxicity, endocrine effects in exposed humans.(omitted)

  • PDF

Gene Structure and Estrogen-Responsive mRNA Expression of a Novel Choriogenin H Isoform from a Marine Medaka Oryzias dancena

  • Lee, Sang Yoon;Kim, Dong Soo;Nam, Yoon Kwon
    • Fisheries and Aquatic Sciences
    • /
    • 제15권3호
    • /
    • pp.221-231
    • /
    • 2012
  • The marine medaka Oryzias dancena choriogenin H gene (odChgH) and its mRNA expression during estradiol-$17{\beta}$ (E2) exposure were characterized. At the amino acid level, the choriogenin H protein is predicted to possess the conserved repetitive N-terminal region, as well as zona pellucida (ZP) and Trefoil factor family (TFF) domains. At the genomic level, odChgH has an eight-exon organization with a distribution pattern of transcription factor binding sites in the 5'-upstream region, which is commonly found in other estrogen-responsive genes. The tissue distribution pattern of odChgH mRNA was found to be gender-specific, whereby females showed a higher expression level and wider tissue distribution than did males. During embryonic development, odChgH mRNA was robustly detected from the stage of visceral blood vessel formation. Experimental E2 exposure of males resulted in odChgH mRNA being induced not only in the liver, but also in other several tissues. The E2-mediated induction was fairly dose-dependent. The basal expression levels of hepatic odChgH mRNA were lower in males that were acclimated to 30 ppt salinity than in those acclimated to 0 or 15 ppt salinity. In contrast, the inducibility of odChgH mRNA during E2 exposure was greater in seawater-acclimated fish than in brackish water- or freshwater-acclimated fish.

Carcinogenicity and mutagenicity of heterocyclic amines in transgenic models

  • Ryu D.Y.
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2000년도 국제심포지움 및 추계학술대회
    • /
    • pp.45-67
    • /
    • 2000
  • 2-Amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) is a mutagenic and carcinogenic heterocyclic amino found in cooked meat. The in vivo mutagenicity and hepatocarcinogenicity of MeIQx were examined in mice harboring the lacZ mutation reporter gene ($Muta^{TM}$ Mice) and bitransgenic mice over-expressing the c-myc oncogene. C57B1/$\lambda$lacZ and bitransgenic c-myc (albumin promoter)/$\lambda$lacZ mice were bred and weaned onto an AIN-76 based diet containing $0.06\%$ (w/w) MeIQx or onto control diet. After 30 weeks on diet, only male bitransgenic mice on MeIQx developed hepatocellular carcinoma ($100\%$ incidence) indicating that there was synergism between c-myc over-expression and MeIQx. By 40 weeks, hepatic tumor incidence was $100\%$ ($17\%$) and $44\%$ ($0\%$) in male c-myc/$\lambda$lacZ and C57B1/$\lambda$lacZ mice given MeIQx (or control) diet, respectively, indicating that either MeIQx or c-myc over-expression alone eventually induced hepatic tumors. At either time point, mutant frequency in the lacZ gene was at least 40-fold higher in MeIQx-treated mice than in control mice of either strain. These findings suggest that MeIQx-induced hepatocarcinogenesis is associated with MeIQx-induced mutations. Elevated mutant frequency in MeIQx-treated mice also occurred concomitant with the formation of MeIQx-guanine adducts as detected by the $^{32}P$-postlabeling assay. Irrespective of strain or diet, sequence analysis of the lacZ mutants from male mouse liver showed that the principal sequence alteration was a single guanine-base substitution. Adenine mutations, however, were detected only in animals on control diet. MeIQx-fed mice harboring the c-myc oncogene showed a l.4-2.6-fold higher mutant frequency in the lacZ gene than mice not carrying the transgene. Although there was a trend toward higher adduct levels in c-myc mice, MeIQx-DNA adduct levels were not significantly different between c-myc/$\lambda$lacZ and C57B1/$\lambda$lacZ mice after 30 weeks on diet. Thus, it appeared that factors in addition to MeIQx-DNA adduct levels, such as the enhance rate of proliferation associated with c-myc over-expression, may have accounted for a higher mutant frequency in c-myc mice. In the control diet groups, the lacZ mutant frequency was significantly higher in c-myc/$\lambda$lacZ mice than in 057B1/$\lambda$1acZ mice. The findings are consistent with the notion that c-myc over-expression is associated with an increase in mutagenesis. The mechanism for the synergistic effects of c-myc over-expression on MeIQx hepatocarcinogenicity appears to involve an enhancement of MeIQx-induced mutations.

  • PDF

Regulation of ANKRD9 expression by lipid metabolic perturbations

  • Wang, Xiaofei;Newkirk, Robert F.;Carre, Wilfrid;Ghose, Purnima;Igobudia, Barry;Townsel, James G.;Cogburn, Larry A.
    • BMB Reports
    • /
    • 제42권9호
    • /
    • pp.568-573
    • /
    • 2009
  • Fatty acid oxidation (FAO) defects cause abnormal lipid accumulation in various tissues, which provides an opportunity to uncover novel genes that are involved in lipid metabolism. During a gene expression study in the riboflavin deficient induced FAO disorder in the chicken, we discovered the dramatic increase in mRNA levels of an uncharacterized gene, ANKRD9. No functions have been ascribed to ANKRD9 and its orthologs, although their sequences are well conserved among vertebrates. To provide insight into the function of ANKRD9, the expression of ANKRD9 mRNA in lipidperturbed paradigms was examined. The hepatic mRNA level of ANKRD9 was repressed by thyroid hormone ($T_3$) and fasting, elevated by re-feeding upon fasting. However, ANKRD9 mRNA level is reduced in response to apoptosis. Transient transfection assay with green fluorescent protein tagged- ANKRD9 showed that this protein is localized within the cytoplasm. These findings point to the possibility that ANKRD9 is involved in intracellular lipid accumulation.

해표이진탕이 기도 뮤신의 분비, 생성 및 유전자 발현에 미치는 영향 (Effect of Haepyoijin-tang on Airway Mucin Secretion, Production, Gene Expression and Hypersecretion of Mucus)

  • 석연희;민상연;김장현
    • 대한한방소아과학회지
    • /
    • 제29권3호
    • /
    • pp.65-79
    • /
    • 2015
  • Objectives : In this study, effects of haepyoijintang (HIJ) on the increase in airway epithelial mucosubstances of rats and ATP-, PMA-, EGF- or TNF-${\alpha}$-induced MUC5AC mucin production and gene expression from human airway epithelial cells were investigated. Methods : Hypersecretion of airway mucus was induced by exposure of rats to $SO_2$ during 3 weeks. Effect of orally-administered HIJ during 2 weeks on increase in airway epithelial mucosubstances from tracheal goblet cells of rats was evaluated using histopathological analysis after staining the epithelial tissue with PAS-alcian blue. Possible cytotoxicity of HIJ was evaluated by examining the potential damage of kidney and liver functions by measuring serum GOT/GPT activities and serum BUN and creatinine concentrations of rats and the body weight gain during experiment, after administering HIJ orally. At the same time, the effect of HIJ on ATP-, PMA-, EGF- or TNF-${\alpha}$-induced MUC5AC mucin production and gene expression from human airway epithelial cells (NCI-H292) were investigated. Confluent NCI-H292 cells were pretreated for 30 min in the presence of HIJ and treated with ATP ($200{\mu}M$), PMA (10 ng/ml), EGF (25 ng/ml) or TNF-${\alpha}$ (0.2 nM) for 24 hrs, to evaluate the effect of HIJ both on ATP-, PMA-, EGF- or TNF-${\alpha}$-induced MUC5AC mucin production using enzyme-linked immunosorbent assay (ELISA) and on gene expression by the same inducers using reverse transcription-polymerase chain reaction (RT-PCR). Results : (1) HIJ decreased the amount of intraepithelial mucosubstances of trachea of rats. (2) HIJ did not show renal and hepatic toxicities and did not affect body weight gain of rats during experiment. (3) HIJ significantly inhibited ATP-, PMA-, EGF-, and TNF-${\alpha}$-induced MUC5AC mucin productions from NCI-H292 cells. (4) HIJ significantly inhibited ATP-, PMA-, EGF-, and TNF-${\alpha}$-induced MUC5AC mucin gene expression from NCI-H292 cells. Conclusions : The result from the present study suggests that HIJ might control the production and gene expression of airway mucin observed in various respiratory diseases accompanied by mucus hypersecretion and do not show in vivo toxicity to liver and kidney functions after oral administration. Effect of HIJ with their diverse components should be further investigated using animal experimental models that can reflect the pathophysiology of airway diseases through future studies.

Gene Expression Profiling of Acetaminophen Induced Hepatotoxicity in Mice

  • Suh, Soo-Kyung;Jung, Ki-Kyung;Jeong, Youn-Kyoung;Kim, Hyun-Ju;Lee, Woo-Sun;Koo, Ye-Mo;Kim, Tae-Gyun;Kang, Jin-Seok;Kim, Joo-Hwan;Lee, Eun-Mi;Park, Sue-Nie;Kim, Seung-Hee;Jung, Hai-Kwan
    • Molecular & Cellular Toxicology
    • /
    • 제2권4호
    • /
    • pp.236-243
    • /
    • 2006
  • Microarray analysis of gene expression has become a powerful approach for exploring the biological effects of drugs, particularly at the stage of toxicology and safety assessment. Acetaminophen (APAP) has been known to induce necrosis in liver, but the molecular mechanism involved has not been fully understood. In this study, we investigated gene expression changes of APAP using microarray technology. APAP was orally administered with a single dose of 50 mg/kg or 500 mg/kg into ICR mice and the animals were sacrificed at 6, 24 and 72 h of APAP administration. Serum biochemical markers for liver toxicity were measured to estimate the maximal toxic time and hepatic gene expression was assessed using high-density oligonucleotide microarrays capable of determining the expression profile of >30,000 well-substantiated mouse genes. Significant alterations in gene expression were noted in the liver of APAP-administered mice. The most notable changes in APAP-administered mice were the expression of genes involved in apoptosis, cell cycle, and calcium signaling pathway, cystein metabolism, glutatione metabolism, and MAPK pathway. The majority of the genes upregulated included insulin-like growth factor binding protein 1, heme oxygenase 1, metallothionein 1, S100 calcium binding protein, caspase 4, and P21. The upregulation of apoptosis and cell cycle-related genes were paralleled to response to APAP. Most of the affected gene expressions were returned to control levels after 72 hr. In conclusion, we identified potential hepatotoxicity makers, and these expressions profiling lead to a better understanding of the molecular basis of APAP-induced hapatotoxicity.

카드뮴이 랫드의 Heat Shock Protein 발현에 미치는 영향과 독성학적 변화에 관한 연구 (Effects of Cadmium on Heat Shock Protein Induction and on Clinical Indices in Rats)

  • 김판기
    • 한국환경보건학회지
    • /
    • 제22권4호
    • /
    • pp.91-101
    • /
    • 1996
  • Exposure indices are important tools which enable scientists to reliably predict and detect exposures to xenobiotics and resultant cell injury. Since the de novo synthesis of stress proteins can be detected early after exposure to some agents, analysis of toxicant-induced changes in gene expression, i.e. alterations in patterns of protein synthesis, may be useful to develop as biomarkers of exposure and toxicity. The acute and chronic effects of cadmium(Cd, $CdCl_2$ 20 mg/kg) on Wistar male rats were evaluated concerning cadmium contents, tissues enzyme activity, HSP expression. The results of the study were as follows: 1. Less cadmium was absorbed through the digestive tracts, but the ratio of contents in renal to hepatic cadmium was higher at 8 weeks after treatment. 2. ALT(alanine aminotransferase), AST(aspartate aminotransferase), glucose, BUN(blood urea nitrogen), creatinine, the key indices of the clinical changes in hepatic and renal function were significantly changed by the cadmium treatment after 1 week in liver, after 4 weeks in kidney. 3. Enhanced synthesis of 70 KDa relative molecular mass proteins were detected in 2 hours after cadmium exposure, with maximum activity occurring at 8~48 hours. Induction of $HSP_{70}$ was evident at proximal tubules and glomeruli in kidney. Testicular cells produced enough HSP to be detected normally. From the above results, it could be concluded that $HSP_{70}$ induction by the cadmium treatment was a rapid reaction to indicate the exposure of xenobiotics.

  • PDF