• Title/Summary/Keyword: Hepatic gene expression

Search Result 216, Processing Time 0.024 seconds

Limiting Concentrate during Growing Period Affect Performance and Gene Expression of Hepatic Gluconeogenic Enzymes and Visfatin in Korean Native Beef Calves

  • Chang, S.S.;Lohakare, J.D.;Singh, N.K.;Kwon, E.G.;Nejad, J.G.;Sung, K.I.;Hong, S.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.2
    • /
    • pp.202-210
    • /
    • 2013
  • This study elucidated the effects of limited concentrate feeding on growth, plasma profile, and gene expression of gluconeogenic enzymes and visfatin in the liver of Hanwoo beef calves. The purpose of this study was to test that reducing the amount of concentrate would partially be compensated by increasing the intake of forage and by altering the metabolic status. The study utilized 20 Korean native beef calves (Hanwoo; 60 to 70 d of age) divided into two groups of 10 calves each for 158 d. Control group calves received the amount of concentrate as per the established Korean feeding standards for Hanwoo, whereas calves in the restricted group only received half the amount of concentrate as per standard requirements. Good quality forage (Timothy hay) was available for ad libitum consumption to both groups. Since calves were with their dam until 4 months of age in breeding pens before weaning, the intake of milk before weaning was not recorded, however, the concentrate and forage intakes were recorded daily. Body weights (BW) were recorded at start and on 10 d interval. Blood samples were collected at start and at 50 d interval. On the final day of the experiment, liver biopsies were collected from all animals in each group. The BW was not different between the groups at all times, but tended to be higher (p = 0.061) only at final BW in control than restricted group. Total BW gain in the control group was 116.2 kg as opposed to 84.1 kg in restricted group that led to average BW gain of 736 g/d and 532 g/d in respective groups, and the differences were significant (p<0.01). As planned, the calves in the control group had higher concentrate and lower forage intake than the restricted group. The plasma variables like total protein and urea were higher (p<0.05) in control than restricted group. The mRNA expressions for the gluconeogenic enzymes such as cytosolic phosphoenol pyruvate carboxykinase (EC 4.1.1.32) and pyruvate carboxylase (EC 6.4.1.1), and visfatin measured by quantitative real-time PCR in liver biopsies showed higher expression (p<0.05) in restricted group than control. Overall, restricting concentrate severely reduced the growth intensity and affected few plasma indices, and gene expression in liver was increased indicating that restricting concentrate in the feeding schemes during early growth for beef calves is not advocated.

A study of Expression of TGF-β1, c-Myc, Erb-B2 and Thymosin-β4 Gene in Alcoholic Liver Damage Tissue. (알코올성 간 손상 조직에서 TGF-β1와 c-Myc, Erb-B2, Thymosin-β4 유전자 발현 융합 연구)

  • Kim, Jean-Soo;Choi, Sang-Ki
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.5
    • /
    • pp.91-97
    • /
    • 2018
  • This study has been conducted to see the expression of $TGF-{\beta}_1$, c-Myc, Erb-B2 and $Thymosin-{\beta}_4$ genes in ethanol - damaged liver tissues. Experimental groups were divided into 2 groups, one where damaged liver was caused by 25% ethanol and normal group administered with purified water. Results of test showed the expression of $TGF-{\beta}_1$, c-Myc, and $Thymosin-{\beta}_4$ genes was higher in the experimental group treated with 25% ethanol than in the normal group. Erb-B2 gene was not expressed clearly. Thus, it is considered that we can expect to utilize $TGF-{\beta}_1$, c-Myc 및 $Thymosin-{\beta}_4$ as auxiliary data and find clinical meanings of diagnosis on hepatic diseases, In addition to serologic and histological examination by convergence examining the gene expression status by molecular diagnostic techniques in liver-related disease prevention and diagnosis through results of this study.

Anti-fibrotic effects of Orostachys japonicus A. Berger (Crassulaceae) on hepatic stellate cells and thioacetamide-induced fibrosis in rats

  • Koppula, Sushruta;Yum, Mun-Jeong;Kim, Jin-Seoub;Shin, Gwang-Mo;Chae, Yun-Jin;Yoon, Tony;Chun, Chi-Su;Lee, Jae-Dong;Song, MinDong
    • Nutrition Research and Practice
    • /
    • v.11 no.6
    • /
    • pp.470-478
    • /
    • 2017
  • BACKGROUND/OBJECTIVE: Orostachys japonicus A. Berger (Crassulaceae) has been used in traditional herbal medicines in Korea and other Asian countries to treat various diseases, including liver disorders. In the present study, the anti-fibrotic effects of O. japonicus extract (OJE) in cellular and experimental hepatofibrotic rat models were investigated. MATERIALS/METHODS: An in vitro hepatic stellate cells (HSCs) system was used to estimate cell viability, cell cycle and apoptosis by MTT assay, flow cytometry, and Annexin V-FITC/PI staining techniques, respectively. In addition, thioacetamide (TAA)-induced liver fibrosis was established in Sprague Dawley rats. Briefly, animals were divided into five groups (n = 8): Control, TAA, OJE 10 (TAA with OJE 10 mg/kg), OJE 100 (TAA with OJE 100 mg/kg) and silymarin (TAA with Silymarin 50 mg/kg). Fibrosis was induced by treatment with TAA (200 mg/kg, i.p.) twice per week for 13 weeks, while OJE and silymarin were administered orally two times per week from week 7 to 13. The fibrotic related gene expression serum biomarkers glutathione and hydroxyproline were estimated by RT-PCR and spectrophotometry, respectively, using commercial kits. RESULTS: OJE (0.5 and 0.1 mg/ mL) and silymarin (0.05 mg/mL) treatment significantly (P < 0.01 and P < 0.001) induced apoptosis (16.95% and 27.48% for OJE and 25.87% for silymarin, respectively) in HSC-T6 cells when compared with the control group (9.09%). Further, rat primary HSCs showed changes in morphology in response to OJE 0.1 mg/mL treatment. In in vivo studies, OJE (10 and 100 mg/kg) treatment significantly ameliorated TAA-induced alterations in levels of serum biomarkers, fibrotic related gene expression, glutathione, and hydroxyproline (P < 0.05-P < 0.001) and rescued the histopathological changes. CONCLUSIONS: OJE can be developed as a potential agent for the treatment of hepatofibrosis.

Effects of Kisspeptin-10 on Lipid Metabolism in Cultured Chicken Hepatocytes

  • Wu, J.;Fu, W.;Huang, Y.;Ni, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.9
    • /
    • pp.1229-1236
    • /
    • 2012
  • Our previous studies showed that kisspeptin-10 (Kp-10) injected in vivo can markedly increase lipid anabolism in liver of quails. In order to investigate the direct effect of Kp-10 on lipid metabolism of hepatocytes in birds, cells were separated from embryos livers and cultured in vitro with 0, 100 and 1,000 nM Kp-10, respectively. The results showed that after 24 h treatment, cells viability was not affected by 100 nM Kp-10, but showed a mild decrease with 1,000 nM Kp-10 compared to the control cells. Based on the results of the cell viability, 100 nM dosage of Kp-10 was selected for the further study and analysis. Compared with control cells, total cholesterol (Tch) contents in 100 nM treated cells were increased by 51.23%, but did not reach statistical significance, while the level of triglyceride (TG), high density of lipoprotein-cholesterol (HDL-C) and low density of lipoprotein-cholesterol (LDL-C) were significantly increased. Real-time PCR results showed that ApoVLDL-II mRNA expression had a tendency to increase, genes including sterol regulatory element-binding protein-1 (SREBP-1), acetyl coenzyme A carboxylase ${\alpha}$ ($ACC{\alpha}$), carnitine palmitoyltransferase 1 (CPT1), 3-hydroxyl-3-methylglutaryl-coenzyme A reductases (HMGCR) and stearyl coenzyme A dehydrogenase-1 (SCD1) mRNA in hepatocytes were significantly down-regulated by 100 nM Kp-10. However, contrary to its gene expression, SREBP-1 protein expression was significantly up-regulated by 100 nM Kp-10. Some of the significant correlations in mRNA expression were found between genes encoding hepatic factors or enzymes involved in lipid metabolism in liver of birds. These results indicate that Kp-10 stimulates lipid synthesis directly in primary cultured hepatocytes of chickens.

The effects of $Angelica$ $keiskei$ $Koidz$ on the expression of antioxidant enzymes related to lipid profiles in rats fed a high fat diet

  • Kim, Eun-Mi;Choi, Jin-Ho;Yeo, Ik-Hyun
    • Nutrition Research and Practice
    • /
    • v.6 no.1
    • /
    • pp.9-15
    • /
    • 2012
  • This study was performed to examine the feeding effects of $Angelica$ $keiskei$ $Koidz$ (AK) and its processed products on serum, liver, and body fat content and the expression of antioxidant genes in rats fed a high fat diet. AK and its processed products were added at 3-5% to a high fat diet and fed to adult rats for 6 weeks. In experiment 1 (EXP 1), the rats were fed with one of six diets including a control diet (normal fat), high fat diet (HF), and HF + AK additives groups (four groups). In experiment 2 (EXP 2), the rats were separated into three groups of HF, HF + AK whole leaves, and HF + fermented juice (FS) + squeeze (SA). Body weight was not different among the groups in either experiment. The liver weight was lower in the FS and SA groups compared to that in the other groups (P<0.05). Serum luteolin was higher in the AK and processed products groups compared to that in the HF group (P<0.05). Gene expression of the antioxidative enzymes catalase and glutathione-s-reductase in the liver was higher in the AK processed products group than that in the other groups (P<0.05). The results suggest that the intake of AK and its processed products increased the expression of antioxidant enzymes in animals fed a high fat diet, reduced hepatic cholesterol content, and increased the effective absorption of luteolin.

Effects of Mori Folium Ethanol Soluble Fraction on mRNA Expression of glucose transporters, acetyl-CoA carboxylase and leptin (상엽 에탄올가용분획의 글루코스전달체, acetyl-CoA 카복시라제 및 렙틴 mRNA 발현에 미치는 영향)

  • Ryu, Jeong-Wha;Yook, Chang-Soo;Chung, Sung-Hyun
    • YAKHAK HOEJI
    • /
    • v.42 no.6
    • /
    • pp.589-597
    • /
    • 1998
  • Effects of Mori Folium Ethanol Soluble Fraction (MFESF) on mRNA expression of glucose transporters, acetyl-CoA carboxylase (ACC) and leptin were examined in db/db mice. 500 and 1000mg/kg dose for MFESF (designated by SY 500 and SY 1000, respectively) and 5mg/kg dose for acarbose were administered for 6 weeks. Quantitations of glucose transporters (GLUT-2 and GLUT-4), ACC and leptin mRNA were performed by RT-PCR and in vitro transcription with co-amplification of rat ${\beta}$-actin gene as an internal standard. Muscular GLUT-4 mRNA expression in MFESF-treated groups were increased dose dependently. On the other hand, MFESF caused the GLLT-4 and leptin mRNA expressions in adipose tissue to decrease dose dependently, which means that triglyceride synthesis in adipocytes might be decreased and consequently signals adipocytes to inhibit the synthesis and release of leptin. Hepatic ACC mRNA expression in MFESF-treated groups was also decreased. and this may result in lowering of serum triiglyceride level. In contrast, liver GLUT-2 mRNA expressions in MFESF-treated and acarbose groups were increased. Higher rate of glucose uptake into hepatocytes is known to inhibit a phosphoenolpyruvate carboxykinase (PEPCK)-catalyzed reaction, which is a rate-limiting step in gluconeogenesis.

  • PDF

Korean Red Ginseng and Korean black ginseng extracts, JP5 and BG1, prevent hepatic oxidative stress and inflammation induced by environmental heat stress

  • Song, Ji-Hyeon;Kim, Kui-Jin;Chei, Sungwoo;Seo, Young-Jin;Lee, Kippeum;Lee, Boo-Yong
    • Journal of Ginseng Research
    • /
    • v.44 no.2
    • /
    • pp.267-273
    • /
    • 2020
  • Background: Continuous exposure to high temperatures can lead to heat stress. This stress response alters the expression of multiple genes and can contribute to the onset of various diseases. In particular, heat stress induces oxidative stress by increasing the production of reactive oxygen species. The liver is an essential organ that plays a variety of roles, such as detoxification and protein synthesis. Therefore, it is important to protect the liver from oxidative stress caused by heat stress. Korean ginseng has a variety of beneficial biological properties, and our previous studies showed that it provides an effective defense against heat stress. Methods: We investigated the ability of Korean Red Ginseng and Korean black ginseng extracts (JP5 and BG1) to protect against heat stress using a rat model. We then confirmed the active ingredients and mechanism of action using a cell-based model. Results: Heat stress significantly increased gene and protein expression of oxidative stress-related factors such as catalase and SOD2, but treatment with JP5 (Korean Red Ginseng extract) and BG1 (Korean black ginseng extract) abolished this response in both liver tissue and HepG2 cells. In addition, JP5 and BG1 inhibited the expression of inflammatory proteins such as p-NF-κB and tumor necrosis factor alpha-α. In particular, JP5 and BG1 decreased the expression of components of the NLRP3 inflammasome, a key inflammatory signaling factor. Thus, JP5 and BG1 inhibited both oxidative stress and inflammation. Conclusions: JP5 and BG1 protect against oxidative stress and inflammation induced by heat stress and help maintain liver function by preventing liver damage.

SAFB1, an RBMX-binding protein, is a newly identified regulator of hepatic SREBP-1c gene

  • Omura, Yasushi;Nishio, Yoshihiko;Takemoto, Tadashi;Ikeuchi, Chikako;Sekine, Osamu;Morino, Katsutaro;Maeno, Yasuhiro;Obata, Toshiyuki;Ugi, Satoshi;Maegawa, Hiroshi;Kimura, Hiroshi;Kashiwagi, Atsunori
    • BMB Reports
    • /
    • v.42 no.4
    • /
    • pp.232-237
    • /
    • 2009
  • Sterol regulatory element-binding protein (SREBP)-1c plays a crucial role in the regulation of lipogenic enzymes in the liver. We previously reported that an X-chromosome-linked RNA binding motif (RBMX) regulates the promoter activity of Srebp-1c. However, still unknown was how it regulates the gene expression. To elucidate this mechanism, we screened the cDNA library from mouse liver by yeast two-hybrid assay using RBMX as bait and identified scaffold attachment factor B1 (SAFB1). Immunoprecipitation assay demonstrated binding of SAFB1 to RBMX. Chromatin immunoprecipitation assay showed binding of both SAFB1 and RBMX to the upstream region of Srebp-1c gene. RNA interference of Safb1 reduced the basal and RBMX-induced Srebp-1c promoter activities, resulting in reduced Srebp-1c gene expression. The effect of SAFB1 overexpression on Srebp-1c promoter was found only in the presence of RBMX. These results indicate a major role for SAFB1 in the activation of Srebp-1c through its interaction with RBMX.

DNA Adduct Formation and Expression of Ras Gene in the Liver of Rats Treated with Aflatoxins at Various Levels (랫드의 간에서 다양한 농도의 아플라톡신 투여에 의한 DNA Adduct의 형성과 Ras의 발현양상)

  • Kim Tae Myoung;Hue Jin Joo;Li Lan;Kim Dae Joong;Nam Sang Yoon;Yun Young Won;Lee Beom Jun
    • Toxicological Research
    • /
    • v.21 no.4
    • /
    • pp.339-345
    • /
    • 2005
  • Aflatoxins are produced by Aspergillus flavus, parasiticus that grows in improperly stored cereals. Aflatoxin $B_1\;(AFB_1)$ is a potent hepatocarcinogen in a variety of experimental animals including human beings. In spite of a high attention to the hepatocarcinogenecity of aflatoxins, the relative toxicity of other types $(AFB_2,\;AFG_1\;and\;AFG_2)$ of the toxins is not fully clarified. Sprague-Dawley male rats were orally administered with $AFB_1,\;AFB_2,\;AFG_1\;and\;AFG_2$ at the dose of 250, 1250, and $2500\;{\mu}g/kg$ body weight. Animals were then killed at 12, 24 or 48 hrs following aflatoxin adminstration. Subsequently the relative weight of liver was measured and histopathological examination on the liver was performed. Level of 8-OxodG and expression of ras gene in the liver was determined. The relative liver weights at high doses of $AFB_1\;and\;AFG_1$ was significantly low. The treatment of $AFB_1$ at the high dose of $2500\;{\mu}g/kg$ showed vacuolar degeneration and centrilobular hepatic necrosis with inflammatory cells. The pathological changes by $AFB_2\;AFG_1,\;and\;AFG_2$ were not clearly found. The formation of 8-OxodG by $AFB_1$ increased in a dose-dependent manner up to 24 hrs after a single treatment of $AFB_1$ thereafter decreased to the level of the control. The treatments of $AFB_2\;AFG_1,\;and\;AFG_2$ showed an inconsistent pattern in the formation of 8-OxodG in the liver of rats with increasing time. The expression of ras oncogene in the liver by $AFB_1$ at the dose of $1250\;{\mu}g/kg$ was increased twice compared to the control. The treatments of $AFB_2\;AFG_1,\;and\;AFG_2$ at all doses decreased the expression of ras in the liver. These results in the present study indicate that $AFB_1$ among aflatoxins with low comparable levels is the most toxic as determined by early biomarkers such as 8-OxodG formation and ras expression. However, the levels of 8-OxodG and ras as biomarkers were not useful to predict the relative hepatocarcinogenicity of aflatoxins to $AFB_1$ in the present model. Further studies are required to look for other biomarkers to predict carcinogenic potency of aflatoxins.

Transcriptional Regulation of Lipogenesis and Adipose Expansion (Lipogenesis와 adipose expansion의 전사조절)

  • Jang, Younghoon
    • Journal of Life Science
    • /
    • v.32 no.4
    • /
    • pp.318-324
    • /
    • 2022
  • PPARγ and C/EBPα are master adipogenic transcription factors (TFs) required for adipose tissue development. They control the induction of many adipocyte genes and the early phase of adipogenesis in the embryonic development of adipose tissue. Adipose tissue continues to expand after birth, which, as a late phase of adipogenesis, requires the lipogenesis of adipocytes. In particular, the liver and adipose tissues are major sites for de novo lipogenesis (DNL), where carbohydrates are primarily converted to fatty acids. Furthermore, fatty acids are esterified with glycerol-3-phosphate to produce triglyceride, a major source of lipid droplets in adipocytes. Hepatic DNL has been actively studied, but the DNL of adipocytes in vivo remains not fully understood. Thus, an understanding of lipogenesis and adipose expansion may provide therapeutic opportunities for obesity, type 2 diabetes, and metabolic diseases. In adipocytes, DNL gene expression is transcriptionally regulated by lipogenesis coactivators, as well as by lipogenic TFs such as ChREBP and SREBP1a. Recent in vivo studies have revealed new insights into the lipogenesis gene expression and adipose expansion. Future detailed molecular mechanism studies will determine how nutrients and metabolism regulate DNL and adipose expansion. This review will summarize recent updates of DNL in adipocytes and adipose expansion in terms of transcriptional regulation.