• 제목/요약/키워드: Hepatic gene expression

검색결과 216건 처리시간 0.022초

갈근탕의 사염화탄소에 의한 간세포 독성 억제효과 (Protective Effect of Galgeun-Tang Against $CCl_4$ Induced Hepatotoxicity)

  • 오수영;서상희;이지혜;이지선;마진열
    • 동의생리병리학회지
    • /
    • 제25권4호
    • /
    • pp.663-668
    • /
    • 2011
  • Galgeun-tang (GGT) has been a great source for treating cold diseases in the folk medicine recipe. Carbon tetrachloride ($CCl_4$) is one type of hepatotoxin that can eventually cause liver injury. During the experiment, we first studied the protective effects of GGT against $CC_4$-induced hepatotoxicity. GGT was pretreated for 3 h, and 1% $CCl_4$ was added to mouse primary liver cells. After 4 h, ROS generation and expression of antioxidant enzymes (catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx)) were analyzed by FACS and real time PCR. Also, the activities of ALT and LDH were measured using cultured medium. The hepatic levels of TNF-alpha and iNOS, which are related to inflammation and stress response gene, HSP72 and HO-1 were analyzed by PCR or real time PCR. Liver tissues were analyzed by HE stain. From the observation, we discovered that GGT treatment protects $CCl_4$-induced hepatotoxicity, and that GGT pretreatment decreases ROS generation, TNF-alpha and iNOS expression. However, gene expression of CAT, SOD, GPx, HSP72 and HO-1 were increased by GGT. These results lead to the conclusion that GGT has protective effects against $CCl_4$-induced hepatotoxicity.

The Ameliorative Effects of Korean Bean-Leaves on Inflammation and Liver Injury in Obese Rat Model

  • Jin, Byung-Moon;Choi, Seok-Cheol;Lee, Hye-Sook;Jung, Sang-Bong;Hyun, Kyung-Yae
    • 대한의생명과학회지
    • /
    • 제19권3호
    • /
    • pp.195-205
    • /
    • 2013
  • Obesity may cause metabolic syndrome and adult diseases. This study was undertaken to investigate the ameliorative or useful effects of beanleaves on inflammation and liver damage in obese rat models. Rats were divided into three groups: a control group (normal diet, n=6), a fat diet group (45%-fat diet, n=7), and a bean leaf group (45%-fat+Korean bean leaves diet, n=7). Body weights in the bean leaf group were lower than those of the fat group (P<0.05). Serum tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and prostaglandin $E_2$ ($PGE_2$) concentrations were lower in both the control and bean leaf groups than in the fat group (P<0.001). TNF-${\alpha}$ concentrations in the bean leaf group were slightly higher than in the control group but statistically significant (P<0.05). The bean leaf group histologically exhibited lower fatty degeneration, spotty necrosis, and leukocyte infiltrations in hepatic tissues than those of the fat group. In the homogenized liver tissues, the cyclooxygenase-2 (COX-2) gene was only expressed in the fat group. The gene expression levels of hepatic TNF-${\alpha}$, inducible nitric-oxide synthase, peroxiome proliferator-activated receptor-${\alpha}$ (PPAR-${\alpha}$), poly (ADP-ribose) polymerase (PARP), and transforming growth factor-${\beta}1$ (TGF-${\beta}1$) were weaker in the bean leaf group than in the fat group. These results suggest that adding bean-leaves to the diet may ameliorate obesity-induced systemic inflammation and liver damage and that bean leaves may be a useful food for preventing obesity and thereby metabolic syndrome and adult diseases.

A Vinegar-processed Ginseng Radix (Ginsam) Ameliorates Hyperglycemia and Dyslipidemia in C57BL/KsJ db/db Mice

  • Han, Eun-Jung;Park, Keum-Ju;Ko, Sung-Kwon;Chung, Sung-Hyun
    • Food Science and Biotechnology
    • /
    • 제17권6호
    • /
    • pp.1228-1234
    • /
    • 2008
  • Having idea to develop more effective anti-diabetic agent from ginseng root, we comprehensively assessed the anti-diabetic activity and mechanisms of ginsam in C57BL/KsJ db/db mice. The db/db mice were divided into 4 groups; diabetic control (DC), ginsam at a dose of 300 or 500 mg/kg (GS300 or GS500) and metformin at a dose of 300 mg/kg (MT300). Ginsam was orally administered for 8 weeks. GS500 reduced the blood glucose concentration and significantly decreased an insulin resistance index. In addition, GS500 reduced the plasma non-esterified fatty acid, triglyceride, and increased high density lipoprotein-cholesterol as well as decreased the hepatic cholesterol and triglyceride. More interestingly, ginsam increased the plasma adiponectin level by 17% compared to diabetic control group. Microarray, quantitative-polymerase chain reaction and enzyme activity results showed that gene and protein expressions associated with glycolysis, gluconeogenesis, and fatty acid oxidation were changed to the way of reducing hepatic glucose production, insulin resistance and enhancing fatty acid $\beta$-oxidation. Ginsam also increased the phosphorylation of AMP-activated protein kinase and glucose transporter expressions in the liver and skeletal muscle, respectively. These changes in gene expression were considered to be the mechanism by which the ginsam exerted the anti-diabetic and anti-dyslipidemic activities in C57BL/KsJ db/db mice.

Regulation of Hepatic Gluconeogenesis by Nuclear Receptor Coactivator 6

  • Oh, Gyun-Sik;Kim, Si-Ryong;Lee, Eun-Sook;Yoon, Jin;Shin, Min-Kyung;Ryu, Hyeon Kyoung;Kim, Dong Seop;Kim, Seung-Whan
    • Molecules and Cells
    • /
    • 제45권4호
    • /
    • pp.180-192
    • /
    • 2022
  • Nuclear receptor coactivator 6 (NCOA6) is a transcriptional coactivator of nuclear receptors and other transcription factors. A general Ncoa6 knockout mouse was previously shown to be embryonic lethal, but we here generated liver-specific Ncoa6 knockout (Ncoa6 LKO) mice to investigate the metabolic function of NCOA6 in the liver. These Ncoa6 LKO mice exhibited similar blood glucose and insulin levels to wild type but showed improvements in glucose tolerance, insulin sensitivity, and pyruvate tolerance. The decrease in glucose production from pyruvate in these LKO mice was consistent with the abrogation of the fasting-stimulated induction of gluconeogenic genes, phosphoenolpyruvate carboxykinase 1 (Pck1) and glucose-6-phosphatase (G6pc). The forskolin-stimulated inductions of Pck1 and G6pc were also dramatically reduced in primary hepatocytes isolated from Ncoa6 LKO mice, whereas the expression levels of other gluconeogenic gene regulators, including cAMP response element binding protein (Creb), forkhead box protein O1 and peroxisome proliferator-activated receptor γ coactivator 1α, were unaltered in the LKO mouse livers. CREB phosphorylation via fasting or forskolin stimulation was normal in the livers and primary hepatocytes of the LKO mice. Notably, it was observed that CREB interacts with NCOA6. The transcriptional activity of CREB was found to be enhanced by NCOA6 in the context of Pck1 and G6pc promoters. NCOA6-dependent augmentation was abolished in cAMP response element (CRE) mutant promoters of the Pck1 and G6pc genes. Our present results suggest that NCOA6 regulates hepatic gluconeogenesis by modulating glucagon/cAMP-dependent gluconeogenic gene transcription through an interaction with CREB.

맥문동탕이 호흡기 점액의 생성 및 분비에 미치는 영향 (Effect of Macmundongtang on Production and Secretion of Respiratory Mucus)

  • 성현경;민상연;김장현
    • 대한한방소아과학회지
    • /
    • 제27권1호
    • /
    • pp.69-81
    • /
    • 2013
  • Objectives In this study, effects of Macmundongtang (MMT) on ATP or TNF-${\alpha}$ or PMA or EGF induced MUC5AC mucin production and gene expression from human airway epithelial cells and the increase in airway epithelial mucosubstances of rats were investigated. Materials and Methods Confluent NCI-H292 cells were pretreated for 30min in the presence of MMT and treated with ATP ($200{\mu}M$) or PMA (10 ng/ml) or EGF (25 ng/ml) or TNF-${\alpha}$ (0.2 nM) for 24hrs, to assess the effect of MMT both on ATP- or PMA- or EGF- or TNF-${\alpha}$-induced MUC5AC mucin production using enzyme-linked immunosorbent assay (ELISA) and on gene expression by the same inducers using reverse transcription-polymerase chain reaction (RT-PCR). At the same time, hypersecretion of airway mucus was induced by exposure of rats to SO2 during 3 weeks. Effect of orally-administered MMT during 2 weeks on increase in airway epithelial mucosubstances from tracheal goblet cells of rats was assesed using histopathological analysis after staining the epithelial tissue with PAS-alcian blue. Possible cytotoxicity of MMT was assessed by investigating the potential damage of kidney and liver functions by measuring serum GOT/GPT activities and serum BUN concentration of rats and the body weight gain during experiment, after administering MMT orally. Results (1) MMT did not only inhibit but also increased MUC5AC mucin productions and expression levels of MUC5AC gene from NCI-H292 cells. (2) MMT did not decrease the amount of intraepithelial mucosubstances of trachea of rats. (3) MMT did not show renal and hepatic toxicities and did not affect body weight gain of rats during experiment. Conclusions The result from the present study suggests that MMT might normalize the production and gene expression of airway mucin observed in various respiratory diseases accompanied by yin-deficiency, without in vivo toxicity to liver and kidney functions after oral administration.

Overexpression of $AMPK{\alpha}1$ Ameliorates Fatty Liver in Hyperlipidemic Diabetic Rats

  • Seo, Eun-Hui;Park, Eun-Jin;Joe, Yeon-Soo;Kang, Soo-Jeong;Kim, Mi-Sun;Hong, Sook-Hee;Park, Mi-Kyoung;Kim, Duk-Kyu;Koh, Hyong-Jong;Lee, Hye-Jeong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제13권6호
    • /
    • pp.449-454
    • /
    • 2009
  • 5'-AMP-activated protein kinase (AMPK) is a heterotrimeric complex consisting of a catalytic ($\alpha$) and two regulatory ($\beta$ and $\gamma$) subunits. Two isoforms are known for catalytic subunit (${\alpha}1$, ${\alpha}2$) and are encoded by different genes. To assess the metabolic effects of $AMPK{\alpha}1$, we examined the effects of overexpression of adenoviral-mediated $AMPK{\alpha}1$ in hyperlipidemic type 2 diabetic rats. The Otsuka Long-Evans Tokushima Fatty (OLETF) rat is an established animal model of type 2 diabetes that exhibits chronic and slowly progressive hyperglycemia and hyperlipidemia. Thirty five-week-old overt type 2 diabetic rats (n=10) were administered intravenously with Ad.$AMPK{\alpha}1$. AMPK activity was measured by phosphorylation of acetyl CoA carboxlyase (ACC). To investigate the changes of gene expression related glucose and lipid metabolism, quantitative real-time PCR was performed with liver tissues. Overexpression of $AMPK{\alpha}1$ showed that blood glucose concentration was decreased but that glucose tolerance was not completely recovered on 7th day after treatment. Plasma triglyceride concentration was decreased slightly, and hepatic triglyceride content was markedly reduced by decreasing expression of hepatic lipogenic genes. Overexpression of $AMPK{\alpha}1$ markedly improved hepatic steatosis and it may have effective role for improving hepatic lipid metabolism in hyperlipidemic state.

인진청간탕가미방(茵蔯淸肝湯加味方)이 간세포(肝細胞)의 증식능력(增殖能力)에 미치는 영향(影響) (The Effect of Injinchunggantang-derivative on Proliferation of Hepatocyte)

  • 박용진;김영철;이장훈;우홍정
    • 대한한의학회지
    • /
    • 제19권1호
    • /
    • pp.145-164
    • /
    • 1998
  • The purpose of this study is to evaluate the effect of Injinchunggantang-derivative on proliferation of hepatocyte in rats. Cell viability is studied by MTI assay. The gene related to cell replication such as p53, waf1, bcl-2 and $bcl-_{X_L}$ is quantitized by quantitative RT-PCR and the proteins coded by these genes are studied by Western blotting. The results are as follows. 1. The hepatocytes cultured in medium with lnjinchunggantang-derivative showed better viability compared with control grroup in MTI assay, and the hepatocytes cultured in medium with the Injinchunggantang-derivative-and-ethanol-mixed group showed better viability than the hepatocytes cultrued in 10% ethanol culture medium(control group), noting that Injinchunggantang-derivative has protective effect on hepatocyte injury. There was no dose- and time-dependence. 2. In quantitative RT-PCR, i) Bel-2 gene increased significantly both in Injinchunggantang-derivative group and in Injinchunggantang-derivative-and-ethanol-mixed group, while it showed no significant increase or decrease in other group. ii) $Bcl-_{X_L}$ gene increased significantly in Injinchunggantang-derivative group as well as in Injinchunggantang-deri vative-and-ethanol -mixed group. iii) P53 gene showed no significant increase or decrease in hepatocytes cultured in medium with 10% ethanol and in hepatocytes cultured in medium with Injinchunggantang-derivative-and-ethanol-mixed group, suggesting that 10% ethanol induced cell toxicity, thus increased p53 gene expression. iv) Wafl gene showed no significant increase or decrease in hepatocytes cutured in medium with Injinchtrnggantang-derivative, while increased in hepatocytes cultured in medium with 10% ethanol and in hepatocytes cultured in medium with Injinchtrnggantang-derivative-andethanol-mixed group, suggesting that 10% ethanol induced cell toxicity increased wafl gene expression. 3. In the study on protein by western blotting, the band of bcl-2 and $bcl-_{X_L}$ were widened in Injinchtrnggantang-derivative group. Especially the amount of $bcl-_{X_L}$ increased significantly compared with other groups. But in the study on p53 and wafl, there was no significant difference among those groups. Above study shows that Injinchunggantang-derivative has good effect on cell viability and that the genes resistant to cell death such as bcl-2 and $bcl-_{X_L}$ are induced by Injinchunggantang-derivative to resist to cell death by toxic agent And this is reconfirmed in protein study using' western blotting: These results suggest that Injinchunggantang-derivative has inhibitory effect on cell death as well as protective effect on hepatocyte. Therefore this prescription is recommended in various liver diseases such as chronic liver disease and-induced hepatic injury.

  • PDF

Induction of Phase I, II and III Drug Metabolism/Transport by Xenobiotics

  • Xu Chang Jiang;Li Christina YongTao;Kong AhNg Tony
    • Archives of Pharmacal Research
    • /
    • 제28권3호
    • /
    • pp.249-268
    • /
    • 2005
  • Drug metabolizing enzymes (DMEs) play central roles in the metabolism, elimination and detoxification of xenobiotics and drugs introduced into the human body. Most of the tissues and organs in our body are well equipped with diverse and various DMEs including phase I, phase II metabolizing enzymes and phase III transporters, which are present in abundance either at the basal unstimulated level, and/or are inducible at elevated level after exposure to xenobiotics. Recently, many important advances have been made in the mechanisms that regulate the expression of these drug metabolism genes. Various nuclear receptors including the aryl hydrocarbon receptor (AhR), orphan nuclear receptors, and nuclear factor-erythoroid 2 p45-related factor 2 (Nrf2) have been shown to be the key mediators of drug-induced changes in phase I, phase II metabolizing enzymes as well as phase III transporters involved in efflux mechanisms. For instance, the expression of CYP1 genes can be induced by AhR, which dimerizes with the AhR nuclear translocator (Arnt) , in response to many polycyclic aromatic hydrocarbon (PAHs). Similarly, the steroid family of orphan nuclear receptors, the constitutive androstane receptor (CAR) and pregnane X receptor (PXR), both heterodimerize with the ret-inoid X receptor (RXR), are shown to transcriptionally activate the promoters of CYP2B and CYP3A gene expression by xenobiotics such as phenobarbital-like compounds (CAR) and dexamethasone and rifampin-type of agents (PXR). The peroxisome proliferator activated receptor (PPAR), which is one of the first characterized members of the nuclear hormone receptor, also dimerizes with RXR and has been shown to be activated by lipid lowering agent fib rate-type of compounds leading to transcriptional activation of the promoters on CYP4A gene. CYP7A was recognized as the first target gene of the liver X receptor (LXR), in which the elimination of cholesterol depends on CYP7A. Farnesoid X receptor (FXR) was identified as a bile acid receptor, and its activation results in the inhibition of hepatic acid biosynthesis and increased transport of bile acids from intestinal lumen to the liver, and CYP7A is one of its target genes. The transcriptional activation by these receptors upon binding to the promoters located at the 5-flanking region of these GYP genes generally leads to the induction of their mRNA gene expression. The physiological and the pharmacological implications of common partner of RXR for CAR, PXR, PPAR, LXR and FXR receptors largely remain unknown and are under intense investigations. For the phase II DMEs, phase II gene inducers such as the phenolic compounds butylated hydroxyanisol (BHA), tert-butylhydroquinone (tBHQ), green tea polyphenol (GTP), (-)-epigallocatechin-3-gallate (EGCG) and the isothiocyanates (PEITC, sul­foraphane) generally appear to be electrophiles. They generally possess electrophilic-medi­ated stress response, resulting in the activation of bZIP transcription factors Nrf2 which dimerizes with Mafs and binds to the antioxidant/electrophile response element (ARE/EpRE) promoter, which is located in many phase II DMEs as well as many cellular defensive enzymes such as heme oxygenase-1 (HO-1), with the subsequent induction of the expression of these genes. Phase III transporters, for example, P-glycoprotein (P-gp), multidrug resistance-associated proteins (MRPs), and organic anion transporting polypeptide 2 (OATP2) are expressed in many tissues such as the liver, intestine, kidney, and brain, and play crucial roles in drug absorption, distribution, and excretion. The orphan nuclear receptors PXR and GAR have been shown to be involved in the regulation of these transporters. Along with phase I and phase II enzyme induction, pretreatment with several kinds of inducers has been shown to alter the expression of phase III transporters, and alter the excretion of xenobiotics, which implies that phase III transporters may also be similarly regulated in a coordinated fashion, and provides an important mean to protect the body from xenobiotics insults. It appears that in general, exposure to phase I, phase II and phase III gene inducers may trigger cellular 'stress' response leading to the increase in their gene expression, which ultimately enhance the elimination and clearance of these xenobiotics and/or other 'cellular stresses' including harmful reactive intermediates such as reactive oxygen species (ROS), so that the body will remove the 'stress' expeditiously. Consequently, this homeostatic response of the body plays a central role in the protection of the body against 'environmental' insults such as those elicited by exposure to xenobiotics.

Gene Regulations in HBV-Related Liver Cirrhosis Closely Correlate with Disease Severity

  • Lee, Se-Ram;Kim, So-Youn
    • BMB Reports
    • /
    • 제40권5호
    • /
    • pp.814-824
    • /
    • 2007
  • Liver cirrhosis (LC) is defined as comprising diffuse fibrosis and regenerating nodules of the liver. The biochemical and anatomical dysfunction in LC results from both reduced liver cell number and portal vascular derangement. Although several studies have investigated dysregulated genes in cirrhotic nodules, little is known about the genes implicated in the pathophysiologic change of LC or about their relationship with the degree of decompensation. Here, we applied cDNA microarray analysis using 38 HBsAg-positive LC specimens to identify the genes dysregulated in HBV-associated LC and to evaluate their relation to disease severity. Among 1063 known cancer- and apoptosis-related genes, we identified 104 genes that were significantly up- (44) or down- (60) regulated in LC. Interestingly, this subset of 104 genes was characteristically correlated with the degree of decompensation, called the Pugh-Child classification (20 Pugh-Child A, 10 Pugh-Child B, and 8 Pugh-Child C). Patient samples from Pugh-Child C exhibited a distinct pattern of gene expression relative to those of Pugh-Child A and B. Especially in Pugh-Child C, genes encoding hepatic proteins and metabolizing enzymes were significantly down-regulated, while genes encoding various molecules related to cell replication were up-regulated. Our results suggest that subsets of genes in liver cells correspond to the pathophysiologic change of LC according to disease severity and possibly to hepatocarcinogenesis.

Nucleotide Sequence of Rat Transketolase and Liver-Specific Pretranslational Activation During Postnatal Development

  • Kim, Sung-Min F.;Kim, Byung-Moon;Jeng, Jingjau;Soh, Yun-Jo;Bak, Choong-Il;Huh, Jae-Wook;Song, Byoung-J.
    • BMB Reports
    • /
    • 제29권2호
    • /
    • pp.146-150
    • /
    • 1996
  • A 2.1 kb cDNA clone for rat transketolase was isolated from rat liver ${\lambda}gt11$ cDNA library and its sequence was determined. The predicted rat transketolase (655 amino acids with $M_r$ 71,186) is highly similar (92%) to that of the human enzyme except that it contains an extra 32 amino acids at its N-terminus. Although it is less similar (<27%) to transketolases from non-mammalian species, the functional motifs such as the catalytic sites and thiamine binding domain are well conserved in the rat enzyme. Southern blot analysis of genomic DNA verified that transketolase appears to be derived from a single gene. Immunoblot and Northern blot analyses suggested that hepatic transketolase was activated pretranslationally by a 2.1-fold while little change was observed in brain enzyme, indicating a tissue-specific pretranslational activation during postnatal development.

  • PDF