• Title/Summary/Keyword: Hepatic damage

Search Result 479, Processing Time 0.024 seconds

The Effect of Hepatic Ischemia and Reperfusion on Energy Metabolism in Rats

  • Jeong Cheol;Cho, Tai-Soon;Lee, Sun-Mee
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1997.04a
    • /
    • pp.97-97
    • /
    • 1997
  • It was reported that ATP depletion occurs and accelerates cell damage during ischemia and reperfusion. To determine the mechanism of cell damage, the change of energy metabolism in liver was studied during ischemia/reperfusion. The groups were divided into four categories : sham-operated group, ischemia/reperfusion group, and two types of ATP-MgCl$_2$ treatment groups(one was treated during ischemia and the another during reperfusion). Rats were administered intravenously saline or ATP-MgCl$_2$. Rats were anesthetized and blood vessels in the left and median lobes of the liver were occluded. After 60min of ischemia, the clamp at those vessels were removed. After ischemia, one and five hours after reflow, energy metabolites(ATP, ADP, AMP, inosine, adenosine, hypoxanthine, xanthine) in liver were measured with HPLC. To observe mitochondrial function, aterial keton body ratio in blood and mitochondrial glutamate dehydrogenase activity in liver were measured. And lipid peroxidation was measured to evalutate the involvement of free radicals. In this study, ATP and ADP were catabolized to their metabolites(AMP, inosine, adenosine, hypoxanthine, xanthine) during ischemia and they resynthesized ATP and ADP during reperfusion. But total purine base were not restored to level of normal rat. The main source of resynthesizing ATP and ADP was AMP. In both ATP-MgCl$_2$ treated groups, mitochondrial function was protected and lipid peroxidation was significantly reduced. Our findings suggest that ischemia/reperfusion impairs hepatic energy metabolism.

  • PDF

Effect of Aging on the Xylene Metabolism in $CCl_4$-Induced Liver Damaged Rats

  • Kim, Hyun-Hee;Yoon, Chong-Guk
    • Biomedical Science Letters
    • /
    • v.7 no.3
    • /
    • pp.111-116
    • /
    • 2001
  • To investigate an effect of aging on the xylene metabolism in liver damaged animals, a study was conducted. 50% carbon tetrachloride ($CCl_4$) in olive oil (0.1 ml/100 g body weight) was intraperitoneally given to 5-week and 12-week rats 12 times every other day and then one dose of 50% xylene in olive oil (0.25 ml/100 g body weight) was intraperitoneally given to the rats, and after 24 hr, the animals were sacrificed. On the basis of the functional findings in rat liver, ie, serum levels of alanine aminotransferase activity, liver protein and malonedialdehyde contents, 5-week rats showed less liver damage than 12-week rats. The increasing rate of urinary methylhippuric acid concentration to the control was significantly higher in 5-week rats than 12-week rats in case of xylene treatment after induction of liver damage. On the other hand, liver damaged 5-week rats showed significant rise of hepatic cytochrome P45O content compared with the liver damaged 12-week rats by the xylene treatment. And increasing rate of hepatic alcohol or aldehyde dehydrogenase activities to each liver damaged animals was higher tendency in 5-week rats than 12-week rats by the xylene treatment. In conclusion, 5-week rat showed greater metabolic rate of xylene than 10-week rats in case of liver injury because 5-week rats led to a slight liver damaged compared with 12-week rats.

  • PDF

Effect of Earthworm Flour Supplemented Diet on the Liver Damage in CCl4-treated Rats (흰쥐에 있어서 간손상(肝損傷)에 미치는 토룡분(土龍粉) 첨가식이의 영향)

  • 윤종국;반재태;신중규
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.4 no.1
    • /
    • pp.105-112
    • /
    • 1994
  • To evaluate the role of dietary earthworm flour in liver injury by CCl4 treatment, the rats were fed 5% earthworm flour supplemented diet for 53 days and control rats were fed standard diet without earthworm supplementation. Liver damage was induced both in earthworm flour supplemented diet and control groups by two intraperitoneal injections of CCl4 at the level of 0.1$m\ell$/100g body weight(50% in olive oil) at intervals of 16 hours the increasing rate of lover weight/body weight(%) and serum levels of alanine aminotransferase activity to the control group were higher in CCl4-treated rats fed earthworm flour supplemented diet than those fed standard diet. The decreasing rate of hepatic microsomal aniline hydroxylase activity was also higher in rats fed earthworm supplemented rats by the CCl4 treatment, Hepatic glutathione S-transferase activity was sinificantly higher in rats fed earthworm supplemented diet than those fed standard diet. It is concluded that a dietary earthworm flour argument the metabolic rate of CCl in rats.

  • PDF

Study on Hepatoprotective and Antioxidant Activities of Korean Red Ginseng-Mixed Formula (홍삼복합제의 보간 및 항산화 작용에 대한 연구)

  • Kang, Chang-Hee;Kim, Dong-Hee;Ryu, Shi-Yong;Kim, Sung-Hoon
    • Korean Journal of Pharmacognosy
    • /
    • v.31 no.4
    • /
    • pp.383-389
    • /
    • 2000
  • GRF (Korean Red Ginseng mixed formula) consists of six herbs such as Ginseng Radix rubra Koreana, Lycii Fructus, Artemisiae Capillaris Herba, Poria, and Glycyrrhizae Radix and Hoveniae Fructus. For the evaluation of hepatoprotective effect of GRF, the study was performed on protective effect against hepatic damage induced by galactosamine in vitro and ccl4 in vivo and also elucidate antioxidant activity. In vitro assay with 1.1 mM galactosamine, protection (%) was 44% (GR), and 58% (GRF-A) at 50 ug/ml. GRF effectively protected fatty degenertion and necrosis in murine hepatic damage induced by ccl4. For the -antioxidant study, GRF inhibited hemolysis of erythrocyte and decolored DPPH (2,2-diphenyl-l-picrylhydrazyl) free radical in a dose dependent manner more effetively than GR alone in vitro. GRF and GR significantly suppressed the time course $(1\;hr{\sim}6\;hr)-level$ of MDA (malondialdehyde) following AAPH (2,2'-azo-bis-(2-amidino -propane) dihydrochloride) treatment in vivo as compared with control data. From the results it can be concluded GR and GRF exerted the hepatoprotective effect by dint of antioxidant activity.

  • PDF

Protective effects of Hizikia fusiforme and Chlorella sp. extracts against lead acetate-induced hepatotoxicity in rats

  • Park, Joo hyun;Choi, Jeong-Wook;Lee, Min-Kyeong;Choi, Youn Hee;Nam, Taek-Jeong
    • Fisheries and Aquatic Sciences
    • /
    • v.22 no.1
    • /
    • pp.2.1-2.9
    • /
    • 2019
  • In the present study, the protective effects of Hizikia fusiforme and Chlorella sp. extracts on lead acetate-induced hepatotoxicity were investigated. Hepatic damage was induced in rats by intraperitoneal (i.p.) injection of lead acetate and the protective effects of H. fusiforme (HZK) and Chlorella sp. (CHL) extracts on lead acetate-induced hepatic damage in rat liver were examined. The results revealed significantly increased glutamic oxaloacetate and glutamic pyruvic transaminase levels in the group treated with lead acetate only (Pb group); oral administration of HZK and CHL extracts tended to decrease the enzyme levels similar to those observed in the control group. Regarding antioxidant enzymes, superoxide dismutase activity was increased in the Pb group and decreased in a concentration-dependent manner in the HZK- and CHL-treated groups. Glutathione levels were increased in a concentration-dependent manner in the HZK- and CHL-treated groups. There was no significant difference in catalase activity. Western blot analysis showed inflammation-related protein expression in mitogen-activated protein kinase and Nrf2 pathways was affected in the HZK- and CHL-treated groups. Therefore, HZK and CHL extracts exerted antioxidant and anti-inflammatory effects against lead acetate-induced hepatotoxicity. Development of functional health foods containing HZK and CHL extracts, which have hepatoprotective effects against inhaled lead acetate, should be considered.

Effects of Radish Leaves Powder on Hepatic Antioxidative System in Rats Fed High-Cholesterol Diet (무청이 고콜레스테롤 식이 흰쥐 간조직의 항산화계에 미치는 영향)

  • Rhee, Soon-Jae;Ahn, Jung-Mo;Ku, Kyung-Hyung;Choi, Jeong-Hwa
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.8
    • /
    • pp.1157-1163
    • /
    • 2005
  • The current study examined the effects of radish loaves powder on hepatic antioxidative system in rats fed high-cholesterol diet. Sprague-Dawley male rats weighing 100$\pm$10 g were randomly assigned to normal group (N group), normal diet with 5$\%$ radish leaves powder supplemented group (NR group) and high-cholesterol groups, which were sub-divided into radish leaves powder free diet group (HC group) and 2.5$\%$ (HRL group), 5$\%$ (HRM group), 10$\%$ (HRH group) radish leaves powder supplemented groups. Hepatic super oxide dimutase activity was no significant differences. Hepatic glutathione peroxidase activity was sig-nificantly increased in 5$\%$, 10$\%$ radish leaves powder supplemented groups. Hepatic hydrogen peroxide contents in cytosol were no significantly differences Hepatic hydrogen peroxide contents in mitochondria were sig-nificantly reduced in radish leaves powder supplemented groups. Hepatic superoxide radical contents in mi-crosome were significantly reduced in radish leaves powder supplemented groups. Hepatic superoxide radical contents in mitochondria were significantly reduced in 5$\%$, 10$\%$ radish leaves powder supplemented groups. Hepatic TBARS values were significantly reduced in 5$\%$, 10$\%$ radish leaves powder supplemented groups. Hepatic lipofuscin contents were no significant difference in high-cholesterol groups. Hepatic carbonyl values were significantly reduced in 5$\%$, 10$\%$ radish leaves powder supplemented groups among high-cholesterol groups. The results indicate that radish leaves may reduce oxidative damage by activating antioxidative de-fense system of liver in rats fed high-cholesterol diets.

Panax ginseng Meyer prevents radiation-induced liver injury via modulation of oxidative stress and apoptosis

  • Kim, Hyeong-Geug;Jang, Seong-Soon;Lee, Jin-Seok;Kim, Hyo-Seon;Son, Chang-Gue
    • Journal of Ginseng Research
    • /
    • v.41 no.2
    • /
    • pp.159-168
    • /
    • 2017
  • Background: Radiotherapy is one of the most important modalities in cancer treatment; however, normal tissue damage is a serious concern. Drug development for the protection or reduction of normal tissue damage is therefore a clinical issue. Herein, we evaluated the protective properties of Panax ginseng Meyer and its corresponding mechanisms. Methods: C56BL/6 mice were orally pretreated with P. ginseng water extract (PGE; 25 mg/kg, 50 mg/kg, or 100 mg/kg) or intraperitoneally injected melatonin (20 mg/kg) for 4 d consecutively, then exposed to 15-Gy X-ray radiation 1 h after the last administration. After 10 d of irradiation, the biological properties of hematoxicity, fat accumulation, histopathology, oxidative stress, antioxidant activity, pro-inflammatory cytokines, and apoptosis signals were examined in the hepatic tissue. Results: The irradiation markedly induced myelosuppression as determined by hematological analysis of the peripheral blood. Steatohepatitis was induced by X-ray irradiations, whereas pretreatment with PGE significantly attenuated it. Oxidative stress was drastically increased, whereas antioxidant components were depleted by irradiation. Irradiation also notably increased serum liver enzymes and hepatic protein levels of pro-inflammatory cytokines. Those alterations were markedly normalized by pretreatment with PGE. The degree of irradiation-induced hepatic tissue apoptosis was also attenuated by pretreatment with PGE, which was evidenced by a terminal deoxynucleotidyl transferase 2'-deoxyuridine 5'-triphosphate nick-end labeling assay, western blotting, and gene expressions analysis, particularly of apoptotic molecules. Conclusion: We suggest that PGE could be applicable for use against radiation-induced liver injury, and its corresponding mechanisms involve the modulation of oxidative stress, inflammatory reactions, and apoptosis.

The Effect of Chaenomelis Fructus Extract on Acute Hepatic Injury in Rats (목과(木瓜)추출물이 급성 간손상 흰쥐에 미치는 효과)

  • Lee, Jin A;Shin, Mi-Rae;Lee, Ji Hye;Roh, Seong-Soo
    • The Journal of Internal Korean Medicine
    • /
    • v.42 no.1
    • /
    • pp.1-10
    • /
    • 2021
  • Objective: This study was conducted to investigate the effect of Chaenomelis Fructus (CF) water extract on thioacetamide (TAA)-treated rats. Methods: Rats were divided into five groups: one normal group (n=8) and four with TAA-induced hepatic injury. These treatment groups were administered distilled water (n=8); silymarin 100 mg/kg (n=8); CF 100 mg/kg (n=8); and CF 200 mg/kg (n=8). In the TAA groups, the acute liver injury was induced via IP injection (200 mg/kg), and the silymarin and CF extract were then orally administered for three days. Subsequently, serum levels of GOT, GPT, and ammonia were confirmed as well as protein expressions using liver tissue. Results: In the liver injury-induced rats, CF administration reduced tissue damage and serum levels of GOT, GPT, and ammonia. In addition, CF increased the anti-oxidant proteins Nrf2, Keap1, HO-1, and catalase and significantly regulated matrix metalloproteinases (MMP-2 and MMP-9) and their tissue inhibitors (TIMP-1 and TIMP-2). Conclusions: In this animal model of liver injury induced by TAA, CF extract is determined to have a hepatoprotective effect by increasing anti-oxidant proteins that relieve damage and by regulating the expression of matrix metalloproteinases.

Extracts and Enzymatic Hydrolysates Derived from Sea Cucumber Stichopus japonicas Ameliorate Hepatic Injury in BisphenolA-treated Mice (비스페놀A 유도 간 손상 마우스에서 해삼(Stichopus japonicas) 추출물 및 가수분해물의 간 기능 개선 효과)

  • Sejeong, Kim;Yun-Ho, Jo;Bi-Oh, Park;Dae-Seok, Yoo;Doo-Ho, Kim;Min-Jung, Kim;Youn-Gil, Kwak;Jin-Seong, Kim
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.61-68
    • /
    • 2022
  • This study aimed to investigate the hepatoprotective activities of the sea cucumber products, including extracts and hydrolysates, in vitro and in vivo. Dried sea cucumber, produced on the western coast of Korea, was boiled in water or 70% ethanol at 85℃ or 100℃ for 18 or 24 h, respectively, to extract bioactive compounds. The enzymatic hydrolysates were prepared by reacting the dried sea cucumber with pepsin or neutral protease (PNL) under optimal enzyme conditions. The anti-inflammatory effect of the samples was investigated using RAW 264.7 cells treated with lipopolysaccharide (LPS). The amount of nitric oxide (NO) was produced from the cells treated with LPS and each sample was compared. Therefore, the pepsin hydrolysate treatment decreased NO production compared to LPS sole treatment. Furthermore, the effects of the samples on cell injury in the hepatic cell line and bisphenolA-induced hepatic injury mouse model were investigated. The water extracts and the pepsin hydrolysates of sea cucumber significantly inhibited cell injury generated in the hepatocytes without cytotoxicity (p < 0.05), whereas the ethanol extracts were cytotoxic. However, these results indicate that the extracts and the enzymatic hydrolysates derived from sea cucumber can be used as beneficial materials for inhibiting liver damage.

Effects of Turmeric (Curcuma longa L.) on Antioxidative Systems and Oxidative Damage in Rats Fed a High Fat and Cholesterol Diet (울금(Curcuma longa L.)이 고지방·고콜레스테롤 식이 흰쥐의 항산화계 및 산화적 손상에 미치는 영향)

  • Kim, Min-Sun;Chun, Sung-Sik;Choi, Jeong-Hwa
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.4
    • /
    • pp.570-576
    • /
    • 2013
  • The purpose of this study was to investigate the effect of turmeric on antioxidative systems and oxidative damage in rats fed a high fat and cholesterol diet. A total 40 rats were divided into four experimental groups: a normal diet group (N), a high fat and cholesterol diet group (HF), a high fat and cholesterol diet group supplemented with 2.5% turmeric powder (TPA group) and a high fat and cholesterol diet group supplemented with 5% turmeric powder (TPB group). The serum glutamate oxaloacetate transaminase (GOT) and glutamate pyruvate transaminase (GPT) activity of the turmeric supplemented groups were decreased compared to the HF group. The GPT activity of the TPB group was especially and significantly decreased compared to the HF group. Hepatic superoxide dismutase (SOD) of the TPB group was significantly increased compared to the HF group. However, there were no significant differences in the activities of hepatic glutathione peroxidase (GSHpx) and catalase (CAT) among all experimental groups. Hepatic glutathione S-transferase (GST) activity in the TPA and TPB groups were increased compared to the HF group. Hepatic superoxide radical content in mitochondria of the 5% turmeric supplemented group was significantly decreased compared to the HF group. Hepatic hydrogen peroxide content in the cytosol and mitochondria of the turmeric-supplemented groups were decreased compared to the HF group. Hepatic carbonyl values in the mitochondria of the turmeric supplemented groups were significantly decreased compared to the HF group. Thiobarbituric acid reaction substance (TBARS) values in the liver were significantly reduced in turmeric supplemented groups compared to the HF group. These result suggest that turmeric powder may reduce oxidative damage through the activation of antioxidative defense systems in rats fed high fat and cholesterol diets.