• Title/Summary/Keyword: Hepatic cells

Search Result 648, Processing Time 0.025 seconds

Inhibition of liver fibrosis by sensitization of human hepatic stellate cells by combined treatment with galtanin and TARIL

  • Dong-Oh Moon
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.138-143
    • /
    • 2023
  • Liver fibrosis is caused by metabolic problems such as cholestasis, genetic problems, or viral infections. Inhibiting hepatic stellate cell (HSC) activation or inducing selective apoptosis of activated HSCs is used as a treatment strategy for liver fibrosis. It has been reported that when HSCs are activated, their apoptosis sensitivity to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is enhanced because the expression of death receptor 5 is elevated. Finding a natural compound that can enhance the apoptotic effect of TRAIL on HSCs is a necessary strategy for liver fibrosis treatment. It was confirmed here that mangosteen-derived gartanin increased the effect of TRAIL-induced apoptosis by increasing the expression of DR5 in a p38-dependent manner in the hepatic stellate cell line LX-2. Combined treatment with gartanin and TRAIL accelerated DNA cleavage through caspase-3 activation and enhanced antifibrotic effects in LX-2 cells.

Protective Effect of Isoliquiritigenin against Ethanol-Induced Hepatic Steatosis by Regulating the SIRT1-AMPK Pathway

  • Na, Ann-Yae;Yang, Eun-Ju;Jeon, Ju Mi;Ki, Sung Hwan;Song, Kyung-Sik;Lee, Sangkyu
    • Toxicological Research
    • /
    • v.34 no.1
    • /
    • pp.23-29
    • /
    • 2018
  • Ethanol-induced fat accumulation, the earliest and most common response of the liver to ethanol exposure, may be involved in the pathogenesis of liver diseases. Isoliquiritigenin (ISL), an important constituent of Glycyrrhizae Radix, is a chalcone derivative that exhibits antioxidant, anti-inflammatory, and phytoestrogenic activities. However, the effect of ISL treatment on lipid accumulation in hepatocytes and alcoholic hepatitis remains unclear. Therefore, we evaluated the effect and underlying mechanism of ISL on ethanol-induced hepatic steatosis by treating AML-12 cells with 200 mM ethanol and/or ISL ($0{\sim}50{\mu}M$) for 72 hr. Lipid accumulation was assayed by oil red O staining, and the expression of sirtuin1 (SIRT1), sterol regulatory element-binding protein-1c (SREBP-1c), AMP-activated protein kinase (AMPK), and peroxisome proliferator-activated receptor alpha ($PPAR{\alpha}$) was studied by western blotting. Our results indicated that ISL treatment upregulated SIRT1 expression and downregulated SREBP-1c expression in ethanol-treated cells. Similarly, oil red O staining revealed a decrease in ethanol-induced fat accumulation upon co-treatment of ethanol-treated cells with 10, 20, and $50{\mu}M$ of ISL. These findings suggest that ISL can reduce ethanol induced-hepatic lipogenesis by activating the SIRT1-AMPK pathway and thus improve lipid metabolism in alcoholic fatty livers.

Antiviral Efficacy of a Short PNA Targeting microRNA-122 Using Galactosylated Cationic Liposome as a Carrier for the Delivery of the PNA-DNA Hybrid to Hepatocytes

  • Kim, Hyoseon;Lee, Kwang Hyun;Kim, Kyung Bo;Park, Yong Serk;Kim, Keun-Sik;Kim, Dong-Eun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.735-742
    • /
    • 2013
  • Peptide nucleic acids (PNAs) that bind to complementary nucleic acid sequences with extraordinarily high affinity and sequence specificity can be used as antisense oligonucleotides against microRNAs, namely antagomir PNAs. However, methods for efficient cellular delivery must be developed for effective use of PNAs as therapeutic agents. Here, we demonstrate that antagomir PNAs can be delivered to hepatic cells by complementary DNA oligonucleotide and cationic liposomes containing galactosylated ceramide and a novel cationic lipid, DMKE (O,O'-dimyristyl-N-lysyl glutamate), through glycoprotein-mediated endocytosis. An antagomir PNA was designed to target miR-122, which is required for translation of the hepatitis C virus (HCV) genome in hepatocytes, and was hybridized to a DNA oligonucleotide for complexation with cationic liposome. The PNA-DNA hybrid molecules were efficiently internalized into hepatic cells by complexing with the galactosylated cationic liposome in vitro. Galactosylation of liposome significantly enhanced both lipoplex cell binding and PNA delivery to the hepatic cells. After 4-h incubation with galactosylated lipoplexes, PNAs were efficiently delivered into hepatic cells and HCV genome translation was suppressed more than 70% through sequestration of miR-122 in cytoplasm. PNAs were readily released from the PNA-DNA hybrid in the low pH environment of the endosome. The present study indicates that transfection of PNA-DNA hybrid molecules using galactosylated cationic liposomes can be used as an efficient non-viral carrier for antagomir PNAs targeted to hepatocytes.

Attenuation of Hepatic Graft-versus-host Disease in Allogeneic Recipients of MyD88-deficient Donor Bone Marrow

  • Lim, Ji-Young;Lee, Young-Kwan;Lee, Sung-Eun;Ju, Ji-Min;Park, Gyeongsin;Choi, Eun Young;Min, Chang-Ki
    • IMMUNE NETWORK
    • /
    • v.15 no.3
    • /
    • pp.125-134
    • /
    • 2015
  • Acute graft-versus-host-disease (GVHD) is characterized by selective damage to the liver, the skin, and the gastrointestinal tract. Following allogeneic hematopoietic stem cell transplantation, donor bone marrow (BM) cells repopulate the immune system of the recipient. We previously demonstrated that the acute intestinal GVHD (iGVHD) mortality rate was higher in MyD88-deficient BM recipients than that in the control BM recipients. In the present study, the role of MyD88 (expressed by donor BM) in the pathophysiology of hepatic GVHD (hGVHD) was examined. Unlike iGVHD, transplantation with MyD88-deficient T-cell depleted (TCD) BM attenuated hGVHD severity and was associated with low infiltration of T cells into the liver of the recipients. Moreover, GVHD hosts, transplanted with MyD88-deficient TCD BM, exhibited markedly reduced expansion of $CD11b^+Gr-1^+$ myeloidderived suppressor cells (MDSC) in the liver. Adoptive injection of the MDSC from wild type mice, but not MyD88-deficient mice, enhanced hepatic T cell infiltration in the MyD88-deficient TCD BM recipients. Pre-treatment of BM donors with LPS increased MDSC levels in the liver of allogeneic wild type BM recipients. In conclusion, hGVHD and iGVHD may occur through various mechanisms based on the presence of MyD88 in the non-T cell compartment of the allograft.

Hepatic Differentiation of Human Eyelid Adipose-Derived Stem Cells (사람의 눈지방유래 줄기세포의 간세포 분화)

  • Park, Soo-Yeon;Park, Se-Ah;Kang, Hyun-Mi;Kim, Hae-Kwon
    • Development and Reproduction
    • /
    • v.12 no.2
    • /
    • pp.183-194
    • /
    • 2008
  • A variety of stem cells has been emerging as therapeutic cells that can replace organ transplantation in human liver diseases. The present study focused on whether human eyelid adipose-derived stem cells (HAD) might differentiate into functional hepatocyte-like cells in vitro. HAD were isolated from human eyelid adipose tissue. Effect of dimethyl sulfoxide (DMSO), fibroblast growth factor (FGF)-2 and FGF-4 on the hepatic differentiation of HAD have been examined in vitro. Immunocytochemical analysis and PAS staining showed that HAD cultured in both DMSO and FGF-4 exhibited the most intense staining than HAD of the other experimental groups. These HAD expressed numerous hepatocyte-related genes. Immunoblotting analyses showed that HAD cultured in the presence of DMSO and FGF-4 secreted higher amount of human albumin than HAD cultured in other conditions. Urea analysis also demonstrated that these HAD produced higher amount of urea than any other groups of HAD. In conclusion, combined treatment of DMSO and FGF-4 could effectively induce the functional differentiation of HAD into hepatocyte-like cells.

  • PDF

Hepatic Toxocariasis with Atypical CT and MR Imaging Findings: a Case Report

  • Shin, Hye Soo;Shin, Kyung Sook;Lee, Jeong Eun;Min, Ji Hye;You, Sun Kyoung;Shin, Byung Seok
    • Investigative Magnetic Resonance Imaging
    • /
    • v.22 no.2
    • /
    • pp.113-118
    • /
    • 2018
  • Hepatic toxocariasis is a type of visceral larva migrans caused by the migration of second-stage larvae of certain nematodes such as Toxocara canis to the liver. Histologically, the condition is characterized by granulomatous lesions containing eosinophils and inflammatory cells. We report a case of hepatic toxocariasis with atypical clinical and radiologic findings presenting as distinct, solitary hepatic nodule detected in a middle-aged woman.

Effects of Cultivated Wild Ginseng Herbal Acupuncture to the serum cytokine on Hepatic Metastatic Model using Colon26-L5 Carcinoma Cells (Colon26-L5 대장암 세포를 이용한 간전이 모델에 산삼약침 처치가 혈중 cytokine에 미치는 영향)

  • Cho, Byung-Jun;Kwon, Ki-Rok
    • Journal of Pharmacopuncture
    • /
    • v.9 no.1
    • /
    • pp.127-137
    • /
    • 2006
  • Objective : This experiment was conducted to evaluate inhibitory effects against hepatic metastasis by cultivated wild ginseng Herbal Acupuncture. Methods : Colon26-L5 carcinoma cells were injected through hepatic portal vein to induce hepatic metastatic cancer. After treated cultivated wild ginseng Herbal Acupuncture and investigated various kinds of cytokine level using cytokine chip. Results : 1. Mice treated with cultivated wild ginseng Herbal Acupuncture reduced the level of $IL-l{\alpha}$, $IL-{\beta}$, and $TNF-{\alpha}$ compared to the control group. 2. Mice treated with cultivated wild ginseng Herbal Acupuncture was not showed significant change in the level of IL-4, IL-l0, IL-12 and $INF-{\gamma}$ compared to the control group. 3. Observing the level of various kinds of cytokine, cultivated wild ginseng Herbal Acupuncture was suppressed pro-inflammatory cytokine. These findings indicate cultivated wild ginseng Herbal Acupuncture is possible to use the inflammatory disease and futher studies carry out for the explanation of anticancer mechanism.

Metformin Induces Lipogenesis and Apoptosis in H4IIE Hepatocellular Carcinoma Cells

  • Deokbae Park;Sookyoung Lee;Hyejin Boo
    • Development and Reproduction
    • /
    • v.27 no.2
    • /
    • pp.77-89
    • /
    • 2023
  • Metformin is the most widely used anti-diabetic drug that helps maintain normal blood glucose levels primarily by suppressing hepatic gluconeogenesis in type II diabetic patients. We previously found that metformin induces apoptotic death in H4IIE rat hepatocellular carcinoma cells. Despite its anti-diabetic roles, the effect of metformin on hepatic de novo lipogenesis (DNL) remains unclear. We investigated the effect of metformin on hepatic DNL and apoptotic cell death in H4IIE cells. Metformin treatment stimulated glucose consumption, lactate production, intracellular fat accumulation, and the expressions of lipogenic proteins. It also stimulated apoptosis but reduced autophagic responses. These metformin-induced changes were clearly reversed by compound C, an inhibitor of AMP-activated protein kinase (AMPK). Interestingly, metformin massively increased the production of reactive oxygen species (ROS), which was completely blocked by compound C. Metformin also stimulated the phosphorylation of p38 mitogen-activated protein kinase (p38MAPK). Finally, inhibition of p38MAPK mimicked the effects of compound C, and suppressed the metformin-induced fat accumulation and apoptosis. Taken together, metformin stimulates dysregulated glucose metabolism, intracellular fat accumulation, and apoptosis. Our findings suggest that metformin induces excessive glucose-induced DNL, oxidative stress by ROS generation, activation of AMPK and p38MAPK, suppression of autophagy, and ultimately apoptosis.

Schisandra Chinensis Baillon regulates the gene expression of phase II antioxidant/detoxifying enzymes in hepatic damage induced rats

  • Jang, Han I;Do, Gyeong-Min;Lee, Hye Min;Ok, Hyang Mok;Shin, Jae-Ho;Kwon, Oran
    • Nutrition Research and Practice
    • /
    • v.8 no.3
    • /
    • pp.272-277
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: This study investigated the antioxidant activities and hepatoprotective effects of Schisandra chinensis Baillon extract (SCE) against tert-butyl hydroperoxide (t-BHP)-induced oxidative hepatic damage in rats. MATERIALS/METHODS: Sprague-Dawley (SD) rats were pretreated with SCE (300, 600, and 1,200 mg/kg BW) or saline once daily for 14 consecutive days. On day 14, each animal, except those belonging to the normal control group, were injected with t-BHP (0.8 mmol/kg BW/i.p.), and all of the rats were sacrificed 16 h after t-BHP injection. RESULTS: Although no significant differences in AST and ALT levels were observed among the TC and SCE groups, the high-dose SCE group showed a decreasing tendency compared to the TC group. However, erythrocyte SOD activity showed a significant increase in the low-dose SCE group compared with the TC group. On the other hand, no significant differences in hepatic total glutathione (GSH) level, glutathione reductase (GR), and glutathione peroxidase (GSH-Px) activities were observed among the TC and SCE groups. Hepatic histopathological evaluation revealed that pretreatment with SCE resulted in reduced t-BHP-induced incidence of lesions, such as neutrophil infiltration, swelling of liver cells, and necrosis. In particular, treatment with a high dose of SCE resulted in induction of phase II antioxidant/detoxifying enzyme expression, such as glutathione S-transferase (GST) and glutamate-cysteine ligase catalytic subunit (GCLC). CONCLUSIONS: Based on these results, we conclude that SCE exerts protective effects against t-BHP induced oxidative hepatic damage through the reduction of neutrophil infiltration, swelling of liver cells, and necrosis. In addition, SCE regulates the gene expression of phase II antioxidant/detoxifying enzymes independent of hepatic antioxidant enzyme activity.

Effects of Artemisia capillaris extract on disorders of hepatic functions and lipid metabolism in rats treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (인진쑥 추출물이 다이옥신계 TCDD (2,3,7,8-Tetrachlorodibenzo-p-dioxin)에 노출된 흰쥐의 간 기능 및 지질대사에 미치는 효과)

  • Lee, Joon Ho;Zhang, Chun Lei;Bi, Shou Chao;Hwang, Seok Youn
    • Journal of Nutrition and Health
    • /
    • v.46 no.3
    • /
    • pp.207-217
    • /
    • 2013
  • This study was conducted in order to investigate the effects of Artemisia capillaris (AC) extract on disorders of hepatic functions and lipid metabolism induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), an endocrine disrupter, using male rats (SD, five weeks old) for a period of three weeks. These 37 animals were divided into four groups. AC extract was added as 1.5% or 3% levels to basal diets, respectively. TCDD (40 ug/kg B.W) was administered by intraperitoneal injection into rats after a week from the beginning of the experiment. AC extract alleviated the increase of rat's relative liver weights induced by TCDD. Thymuses of all rats treated with TCDD were apparently shrunken by approximately 80%. Levels of white blood cells (WBC), red blood cells, hemoglobin, and hematocrits were significantly increased by treatment with TCDD, however, WBC tended to decrease by AC extract diets. In hepatic function, the elevation of glutamic oxalacetic transaminase activities by TCDD treatment was diminished by AC extract diets. Serum HDL-cholesterol levels were significantly elevated by AC extract diets. The apparent increase of triglyceride levels of rat livers induced by TCDD was significantly suppressed in the AC extract diet groups. Hepatic cytosolic catalase activities significantly decreased by treatment with TCDD showed a recovering trend by AC extract diets. In histochemical observation, the fat droplets and apoptosis of hepatocytes treated with TCDD were markedly alleviated by AC extract diets. These results indicated that AC could exert recovering effects on some disorders of hepatic functions, lipids metabolism, and antioxidant activities resulting from TCDD treatment.