• Title/Summary/Keyword: Hepatic cells

Search Result 649, Processing Time 0.027 seconds

Effects of the Cedrela sinensis A. Juss. Leaves on the Alcohol-Induced Oxidative Stress in the Human Hepatic HepG2 Cells (알코올을 처리한 HepG2 세포에서 참죽나무 잎 추출물의 세포 보호 및 항산화 효과)

  • Kim, Hyun-Jeong;Cho, Su-Yeon;Kim, Jung-Bong;Kim, Heon-Woong;Choe, Jeong-Sook;Jang, Hwan-Hee
    • The Korean Journal of Food And Nutrition
    • /
    • v.31 no.4
    • /
    • pp.464-470
    • /
    • 2018
  • All the parts of the Cedrela sinensis A. Juss., including the seeds, roots, and leaves, have been known to exert medicinal effects. The C. sinensis and its major compound, quercetin, were previously reported to exhibit the anti-inflammatory and anti-oxidative activities. However, the hepatoprotective effects of the C. sinensis leaves against the alcohol-induced oxidative stress in the HepG2 cells have not been studied. In this study, we investigated the antioxidant activities and analyzed the flavonoid contents of the C. sinensis-leaf extract (CE). The total flavonoid contents of the CE is 1,874.5 mg/100 g dry weight (DW), while the total quercetin 3-O-rhamnoside (quercitrin) contents, which was identified as the major flavonol in the CE, is 1,456.0 mg/100 g DW. In the ethanol-stimulated HepG2 cells, the CE effectively prevented the cytotoxic effect and increased the gene expression of the antioxidant enzymes, such as the heme oxygenase-1 (HO-1) and the glutathion peroxide (GPx). The level of the reactive oxygen species (ROS) production was significantly decreased in the CE-treated HepG2 cells. In conclusion, the C. sinensis extract suppressed the alcohol-induced oxidative stress in the HepG2 cells via the induced GPx and HO-1 gene expressions. It is expected the CE positive effects will likely be attributed to the flavonoids, like the quercetin, within the CE.

CAGE, a Novel Cancer/Testis Antigen Gene, Promotes Cell Motility by Activating ERK and p38 MAPK and Downregulating ROS

  • Shim, Hyeeun;Shim, Eunsook;Lee, Hansoo;Hahn, Janghee;Kang, Dongmin;Lee, Yun-Sil;Jeoung, Dooil
    • Molecules and Cells
    • /
    • v.21 no.3
    • /
    • pp.367-375
    • /
    • 2006
  • We previously identified a novel cancer/testis antigen gene CAGE by screening cDNA expression libraries of human testis and gastric cancer cell lines with sera of gastric cancer patients. CAGE is expressed in many cancers and cancer cell lines, but not in normal tissues apart from the testis. In the present study, we investigated its role in the motility of cells of two human cancer cell lines: HeLa and the human hepatic cancer cell line, SNU387. Induction of CAGE by tetracycline or transient transfection enhanced the migration and invasiveness of HeLa cells, but not the adhesiveness of either cell line. Overexpression of CAGE led to activation of ERK and p38 MAPK but not Akt, and inhibition of ERK by PD98059 or p38 MAPK by SB203580 counteracted the CAGE-promoted increase in motility in both cell lines. Overexpression of CAGE also resulted in a reduction of ROS and an increase of ROS scavenging, associated with induction of catalase activity. Inhibition of ERK and p38 MAPK increased ROS levels in cells transfected with CAGE, suggesting that ROS reduce the motility of both cell lines. Inhibition of ERK and p38 MAPK reduced the induction of catalase activity resulting from overexpression of CAGE, and inhibition of catalase reduced CAGE-promoted motility. We conclude that CAGE enhances the motility of cancer cells by activating ERK and p38 MAPK, inducing catalase activity, and reducing ROS levels.

Conversion of Apricot Cyanogenic Glycosides to Thiocyanate by Liver and Colon Enzymes

  • Lee, Ji-Yeon;Kwon, Hoon-Jeong
    • Toxicological Research
    • /
    • v.25 no.1
    • /
    • pp.23-28
    • /
    • 2009
  • Some of the edible plants like apricot kernel, flaxseed, and cassava generate hydrogen cyanide (HCN) when cyanogenic glycosides are hydrolyzed. Rhodanese (thiosulfate: cyanide sulfurtransferases of TSTs; EC: 2.8.1.1) is a sulfide-detoxifying enzymes that converts cyanides into thiocyanate and sulfite. This enzyme exists in a liver and kidneys in abundance. The present study is to evaluate the conversion of apricot cyanogenic glycosides into thiocyanate by human hepatic (HepG2) and colonal (HT-29) cells, and the induction of the enzymes in the rat. The effects of short term exposure of amygdalin to rats have also been investigated. Cytosolic, mitochondrial, and microsomal fractions from HepG2 and HT-29 cells and normal male Spraque-Dawley rats were used. When apricot kernel extract was used as substrate, the rhodanese activity in liver cells was higher than the activity in colon cells, both from established human cell line or animal tissue. The cytosolic fractions showed the highest rhodanese activity in all of the cells, exhibiting two to three times that of microsomal fractions. Moreover, the cell homogenates could metabolize apricot extract to thiocyanate suggesting cellular hydrolysis of cyanogenic glycoside to cyanide ion, followed by a sulfur transfer to thiocyanate. After the consumption of amygdalin for 14 days, growth of rats began to decrease relative to that of the control group though a significant change in thyroid has not been observed. The resulting data support the conversion to thiocyanate, which relate to the thyroid dysfunction caused by the chronic dietary intake of cyanide. Because Korean eats a lot of Brassicaceae vegetables such as Chinese cabbage and radish, the results of this study might indicate the involvement of rhodanese in prolonged exposure of cyanogenic glycosides.

Combination of EHE and Silymarin ameliorates liver fibrosis by inhibiting TGF-β/Smad pathway in LX-2 cells (마황(麻黃)과 Silymarin의 병용이 TGF-β/Smad 경로 억제를 통한 간섬유화 억제효능)

  • Sang Mi Park;Hyo Jeong Jin;Ye Lim Kim;Sook Jahr Park;Sang Chan Kim
    • The Korea Journal of Herbology
    • /
    • v.39 no.4
    • /
    • pp.19-28
    • /
    • 2024
  • Objectives : Ephedrae Herba has been used in the East Asian traditional medicine, for treatment of asthma, cold and influenza. Silymarin is an effective antioxidant and its anti-fibrogenic, anti-inflammatory, and hepatoprotective properties have been reported. This study was performed to explore an anti-fibrogenic potential of Ephedrae Herba extract (EHE) + silymarin on immortalized human hepatic stellate cell line, LX-2 cells. Methods : We studied the anti-fibrogenic effects of EHE + silymarin on transforming growth factor β1 (TGF-β1) signaling pathway in LX-2 cells. Cell viability was measured using the MTT assay. mRNA levels were detected by real-time PCR. TGF-β1 signaling-related proteins expression were detected by Western blot. Results : Silymarin 30 ㎍/mL and EHE 100 ㎍/mL showed cytotoxicity on LX-2 cells. Therefore, the concentrations of silymarin and EHE were studied at 10 ㎍/mL, respectively. Silymarin significantly reduced PAI-1 protein expression, Smad binding element (SBE) luciferase activity, and mRNA (PAI-1, MMP2 and 9) expression compared to TGF-β1. EHE significantly reduced SBE luciferase activity and mRNA (PAI-1, MMP2 and 9) expression compared to TGF-β1. More importantly, EHE + silymarin significantly reduced all parameters compared to TGF-β1, and also significantly reduced compared to EHE alone and silymarin alone. Conclusion : The results indicate that EHE + silymarin has anti-fibrogenic effect in LX-2 cells induced by TGF-β1. Additionally, EHE + silymarin shows more effective anti-fibrogenic effect than EHE alone and silymarin alone.

Influence of Panax Ginseng on Hepatic DNA Synthesis in Mice (고려인삼이 마우스의 간조직 DNA 합성능에 미치는 영향( I ))

  • Chae, Y.B.;Chang, W.S.;Kwon, Y.C.
    • The Korean Journal of Physiology
    • /
    • v.8 no.1
    • /
    • pp.27-30
    • /
    • 1974
  • It was planned to evaluate the influence of Panax Ginseng upon hepatic DNA synthesis in mice by observing incorporation of $[^3H]$ thymidine into the tissue cells. Thirty male mice$(body\;weight:\;18{\sim}20\;g)$ were divided equally into the ginseng and the saline groups. Each animal of the ginseng and the saline groups received every day (subcutaneously) 0.05 m1/10 g body weight of ginseng extract (4mg of ginseng alcohol extract in 1 ml of saline) and the same amount of saline, respectively, for 5 days. On the 5th experimental day, all animals received $1\;{\mu}Ci/g$ body weight of $[^3H]$ thymidine intraperitoneally 2 hours after the last medication. Five animals, at a lime, of each group were sacrificed 1, 10, and 24 hours after thymidine administration, and their hepatic radioactivity was measured autoradiographically in terms of the % number of radioactive cells in 1,000 cell counts (Radioactive Index, R.I.). Following results were obtained: 1. The hepatic radioactive indices obtained from the saline group 1, 10, and 24 hour after $[^3H]$ thymidine administration were $3.23{\pm}0.23,\;5.20{\pm}0.21,\;and\;6.00{\pm}0.30\;(mean{\pm}S.D.)$, respectively. 2. The corresponding values obtained from the ginseng group $(4.22{\pm}0.33,\;6.32{\pm}0.32,\;and\;7.42{\pm}0.35)$ were significant higher than the values of the saline group. The inference from the above results was that the ginseng facilitated hepatic DNA synthesis.

  • PDF

Hepatic Cirrhosis Secondary to chronic Hepatitis in an English Cocker Spaniel (ECS) Dog (잉글리쉬 코커스파니엘 견에서 발생한 만성 간염 및 간경화 증례)

  • Park Chul;Yoo Jong-Hyun;Jung Dong-In;Kim Ha-Jung;Kang Byeong-Teck;Lim Chae-Young;Yoon Hun-Young;Jeong Soon-Wuk;Sur Jung-Hyang;Park Hee-Myung
    • Journal of Veterinary Clinics
    • /
    • v.23 no.1
    • /
    • pp.72-76
    • /
    • 2006
  • A 1-year-old, female English cocker spaniel (ECS) dog was presented with 3-month history of vomiting and retaking of the vomitus, and chronic weight loss. The client had noticed mild abdominal distension 10 days before. The dog was diagnosed as chronic hepatitis with hepatic cirrhosis based on complete blood count (CBC), serum chemistry profiles, radiography, ascites assessment, bile acid evaluation, and liver biopsy through exploratory laparotomy and necropsy. CBC and serum chemistry profiles revealed mild anemia, slightly elevated hepatic enzymes (ALT and AST), increased creatinine kinase (CK), hyperammonemia, and hypoproteinemia with hypoalbuminemia. Ascites was transudate according to analysis of components. Bile acid assessment (fasting; $174.4{\mu}mol/L$ and postprandial; $198.4{\mu}mol/L$) showed strongly suspected hepatic insufficiency. On radiological findings, ascites was evident. Atrophied liver (especially left side lobes) and distended mesenteric vasculatures were observed by exploratory laparotomy. Histopathological examination of marginal lesion of left lateral lobe of liver by biopsy revealed the necrosis of hepatic cells, dilation of sinusoids, infiltration of neutrophils in sinusoids, and vacuolation of hepatic cytoplasm. The patient had been managed with careful low protein diet and specific supportive therapy (ursodeoxycholic acid, prednisolone, vitamine E, and interferon). Vomiting and ascites disappeared with medical management. The dog was monitored periodically by CBC, serum chemistry and radiographic examination. The dog survived more 18 months with medical therapy. After spontaneous death, necropsy and histopathologic examination were performed.

Research on Anti-lipogenic Effect and Underlying Mechanism of Laminaria japonica on Experimental Cellular Model of Non-alcoholic Fatty Liver Disease (비알코올성 지방간 세포 모델에서 곤포의 효능과 기전 연구)

  • Kim, So-Yeon;Kwon, Jung-Nam;Lee, In;Hong, Jin-Woo;Choi, Jun-Yong;Park, Seong-Ha;Kwun, Min-Jung;Joo, Myung-Soo;Han, Chang-Woo
    • The Journal of Internal Korean Medicine
    • /
    • v.35 no.2
    • /
    • pp.175-183
    • /
    • 2014
  • Objectives : We tried to uncover the anti-lipogenic effect and underlying mechanism of Laminaria japonica on an experimental cellular model of non-alcoholic fatty liver disease. Methods : Ethanol extract of Laminaria japonica (LJ) was prepared. Intracellular lipid content of palmitate-treated HepG2 cells was evaluated with or without LJ treatment. We measured the effects of LJ on liver X receptor ${\alpha}$ ($LXR{\alpha}$) and sterol regulatory element-binding transcription factor-1c (SREBP-1c) expression, transcription level of lipogenic genes, including acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), stearoyl-CoA desaturase-1 (SCD-1), and nuclear factor erythroid 2-related factor 2 (Nrf2) activation in HepG2 cells. Results : LJ markedly attenuated palmitate-induced intracellular lipid accumulation in HepG2 cells. LJ suppressed $LXR{\alpha}$-dependent SREBP-1c activation, and SREBP-1c mediated induction of ACC, FAS, and SCD-1. Furthermore, LJ activated Nrf2, which plays an important cytoprotective role in non-alcoholic fatty liver disease. Conclusions : Our study suggests that LJ has the potential to alleviate hepatic lipid accumulation, and this effect was mediated by inhibiting the $LXR{\alpha}$-SREBP-1c pathway that leads to hepatic steatosis. In addition, the anti-lipogenic potential may, at least in part, be associated with activation of Nrf2.

Anti-fibrotic effects of Orostachys japonicus A. Berger (Crassulaceae) on hepatic stellate cells and thioacetamide-induced fibrosis in rats

  • Koppula, Sushruta;Yum, Mun-Jeong;Kim, Jin-Seoub;Shin, Gwang-Mo;Chae, Yun-Jin;Yoon, Tony;Chun, Chi-Su;Lee, Jae-Dong;Song, MinDong
    • Nutrition Research and Practice
    • /
    • v.11 no.6
    • /
    • pp.470-478
    • /
    • 2017
  • BACKGROUND/OBJECTIVE: Orostachys japonicus A. Berger (Crassulaceae) has been used in traditional herbal medicines in Korea and other Asian countries to treat various diseases, including liver disorders. In the present study, the anti-fibrotic effects of O. japonicus extract (OJE) in cellular and experimental hepatofibrotic rat models were investigated. MATERIALS/METHODS: An in vitro hepatic stellate cells (HSCs) system was used to estimate cell viability, cell cycle and apoptosis by MTT assay, flow cytometry, and Annexin V-FITC/PI staining techniques, respectively. In addition, thioacetamide (TAA)-induced liver fibrosis was established in Sprague Dawley rats. Briefly, animals were divided into five groups (n = 8): Control, TAA, OJE 10 (TAA with OJE 10 mg/kg), OJE 100 (TAA with OJE 100 mg/kg) and silymarin (TAA with Silymarin 50 mg/kg). Fibrosis was induced by treatment with TAA (200 mg/kg, i.p.) twice per week for 13 weeks, while OJE and silymarin were administered orally two times per week from week 7 to 13. The fibrotic related gene expression serum biomarkers glutathione and hydroxyproline were estimated by RT-PCR and spectrophotometry, respectively, using commercial kits. RESULTS: OJE (0.5 and 0.1 mg/ mL) and silymarin (0.05 mg/mL) treatment significantly (P < 0.01 and P < 0.001) induced apoptosis (16.95% and 27.48% for OJE and 25.87% for silymarin, respectively) in HSC-T6 cells when compared with the control group (9.09%). Further, rat primary HSCs showed changes in morphology in response to OJE 0.1 mg/mL treatment. In in vivo studies, OJE (10 and 100 mg/kg) treatment significantly ameliorated TAA-induced alterations in levels of serum biomarkers, fibrotic related gene expression, glutathione, and hydroxyproline (P < 0.05-P < 0.001) and rescued the histopathological changes. CONCLUSIONS: OJE can be developed as a potential agent for the treatment of hepatofibrosis.

Effect of Wood Vinegar Produced from Morus alba on Hypersecretion of Airway Mucus (상지(桑枝) 목초액이 호흡기 객담 과다분비에 미치는 영향)

  • Kim, Ho;Jung, Hye-Mi;Kim, Sol-Li;Seo, Un-Kyo
    • The Journal of Internal Korean Medicine
    • /
    • v.31 no.3
    • /
    • pp.650-666
    • /
    • 2010
  • Objectives : In this study, the author tried to investigate whether wood vinegar produced from Morus alba (MA) significantly affects the increase in airway epithelial mucosubstances and hyperplasia of tracheal goblet cells of rats, and in vitro airway mucin secretion and PMA- or EGF- or TNF-alpha-induced MUC5AC mucin production / gene expression from human airway epithelial cells. Materials and Methods : For the in vivo experiment, the author induced hypersecretion of airway mucus and goblet cell hyperplasia by exposure of rats to SO2 over 3 weeks. Effect of orally-administered MA over 2 weeks on increase in airway epithelial mucosubstances from tracheal goblet cells of rats and hyperplasia of goblet cells were assessed using histopathological analysis after staining the epithelial tissue with alcian blue. For the in vitro experiment, confluent RTSE cells were chased for 30 min in the presence of MA to assess the effect of MA on mucin secretion by enzyme-linked immunosorbent assay (ELISA). Also, effects of MA on PMA- or EGF- or TNF-alpha-induced MUC5AC mucin production and gene expression from human airway epithelial cells (NCI-H292) were investigated. Confluent NCI-H292 cells were pretreated for 30 min in the presence of MA and treated with PMA (10 ng/ml), EGF (25 ng/ml) or TNF-alpha (0.2 nm) for 24 hrs, to assess both effects of MA on PMA- or EGF- or TNF-alpha-induced MUC5AC mucin production by enzyme-linked immunosorbent assay (ELISA) and gene expression by reverse transcription-polymerase chain reaction (RT-PCR). Possible cytotoxicities of MA in vitro were assessed by examining LDH release from RTSE cells and the rate of survival and proliferation of NCI-H292 cells. In vivo liver and kidney toxicities of MA were evaluated by measuring serum GOT/GPT activities and serum BUN/creatinine concentrations of rats after administering MA orally. Results : 1. MA decreased the amount of intraepithelial mucosubstances of rats exposed to sulfur dioxide inhalationally. 2. MA decreased in vitro mucin secretion from cultured RTSE cells. 3. MA significantly inhibited PMA-, EGF-, and TNF-alpha-induced MUC5AC mucin productions and the expression levels of MUC5AC mRNA from NCI-H292 cells. 4. MA did not show either in vitro or in vivo hepatic or renal toxicities. Conclusion : The results from this study suggests that MA can regulate the secretion, production and gene expression of airway mucin observed in diverse respiratory diseases accompanied by mucus hypersecretion and does not show in vivo toxicity to liver and kidney functions after oral administration. Effects of MA should be further studied using animal experimental models that simulate the diverse pathophysiology of respiratory diseases via future research.

Effect of Ash Tree Leaf Extract on Acetaminophen-Induced Hepatotoxicity in Mice

  • Jeon, Jeong-Ryae;Choi, Joon-Hyuk
    • Food Science and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.752-755
    • /
    • 2006
  • This study was carried out to investigate the effects of ash tree leaf extract (ALE) on acetaminophen (APAP)-induced hepatotoxicity in mice. Hepatoprotective effects were detected by biochemical analysis of hepatic enzymes and histopathological examination of the liver. BALB/c mice were divided into three groups: 'normal' control mice, APAP-treated control mice, and mice pretreated with ALE and treated with APAP. A single dose of APAP markedly increased levels of plasma aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Light micrographs of liver cells stained with hematoxylin and eosin showed that APAP induced severe centrilobular necrosis, degeneration, and infiltration by inflammatory cells. Moreover, APAP caused the numbers of TUNEL-positive hepatocytes to increase and caused glycogen content to decrease as observed by Periodic acid-Schiff stain. However, pretreatment with ALE for 7 days prior to the administration of APAP significantly decreased plasma levels of AST and ALT. Histological findings demonstrated that ALE pretreatment alleviated APAP-induced liver damage, and induced the regeneration of liver tissue and restoration of glycogen. These results indicate that ash tree leaf extract exerts a protective effect against APAP-hepatotoxicity induced injury.