• Title/Summary/Keyword: Hepatic Genes

Search Result 201, Processing Time 0.027 seconds

Inhibitory effect of water-soluble mulberry leaf extract on hepatic lipid accumulation in high-fat diet-fed rats via modulation of hepatic microRNA-221/222 expression and inflammation (고지방식이 급여 쥐에서 수용성 뽕나무 잎 추출물의 간 microRNA-221/222 발현 및 염증 조절을 통한 간 지질 축적억제 효과)

  • Lee, Mak-Soon;Kim, Cheamin;Ko, Hyunmi;Kim, Yangha
    • Journal of Nutrition and Health
    • /
    • v.55 no.2
    • /
    • pp.227-239
    • /
    • 2022
  • Purpose: This study investigated the effects of water-soluble mulberry leaf extract (ME) on hepatic lipid accumulation in high-fat diet-fed rats via the regulation of hepatic microRNA (miR)-221/222 and inflammation. Methods: Male Sprague-Dawley rats (4 weeks old) were randomly divided into 3 groups (n = 7 each) and fed with 10 kcal% low-fat diet (LF), 45 kcal% high-fat diet (HF), or HF + 0.8% ME for 14 weeks. Lipid profiles and cytokine levels of the liver and serum were measured using commercial enzymatic colorimetric and enzyme-linked immunosorbent assay, respectively. The messenger RNA (mRNA) and miR levels in liver tissue were assayed by real-time quantitative reverse-transcription polymerase chain reaction. Results: Supplementation of ME reduces body weight and improves the liver and serum lipid profiles as compared to the HF group. The mRNA levels of hepatic peroxisome proliferator-activated receptor-gamma, sterol regulatory element binding protein-1c, fatty acid synthase, and fatty acid translocase, which are genes involved in lipid metabolism, were significantly downregulated in the ME group compared to the HF group. In contrast, the mRNA level of hepatic carnitine palmitoyl transferase-1 (involved in fatty acid oxidation) was upregulated by ME supplementation. Furthermore, administration of ME significantly downregulated the mRNA levels of inflammatory mediators such as hepatic tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), monocyte chemoattractant protein-1, and inducible nitric oxide synthase. The serum levels of TNF-α, IL-6, and nitric oxide were also significantly reduced in ME group compared to the HF group. Expression of hepatic miR-221 and miR-222, which increase in the inflammatory state of the liver, were also significantly inhibited in the ME group compared to the HF group. Conclusion: These results indicate that ME has the potential to improve hepatic lipid accumulation in high-fat diet-fed rats via modulation of inflammatory mediators and hepatic miR-221/222 expressions.

Suppression of Adiposity and Improvement of Fat Metabolism in High-fat Diet-induced Obese Mice Treated with an Inonotus obliquus Extract (고지방식이 유도 비만 마우스에서 차가버섯(Inonotus obliquus) 추출물의 체중 증가 억제 및 지방대사 개선 작용)

  • Kim, Bobae;Kim, Min-Seok;Hyun, Chang-Kee
    • Korean Journal of Pharmacognosy
    • /
    • v.47 no.2
    • /
    • pp.172-178
    • /
    • 2016
  • Using high-fat diet-induced obese (DIO) mice, the mechanism of anti-adiposity and anti-obesity actions produced by Inonotus obliquus water extract (IOE) was investigated. Significant reduction in body weight in DIO mice orally administrated with IOE for 8 weeks compared to IOE-non-treated control mice was observed, which was attributed to the reduction of epididymal and mesenteric adipose tissue, but not the liver and skeletal muscle. Adiponectin synthesis in epididymal adipose tissue (EAT) and AMPK phosphorylation in the liver were significantly increased in IOE-treated DIO mice. Gene expression analysis showed that IOE-treated DIO mice had higher expression levels of lipogenic genes in EAT and fatty-acid oxidative genes in the liver, but lower expression levels of hepatic pro-inflammatory cytokines compared to IOE-non-treated controls. Our findings confirm a therapeutic potential of Inonotus obliquus for reducing adiposity and ameliorating hyperlipidemia to treat metabolic disorders.

Inhibition of TNF-α-Mediated NF-κB Transcriptional Activity by Dammarane-Type Ginsenosides from Steamed Flower Buds of Panax ginseng in HepG2 and SK-Hep1 Cells

  • Cho, Kyoungwon;Song, Seok Bean;Nguyen, Huu Tung;Kim, Kyoon Eon;Kim, Young Ho
    • Biomolecules & Therapeutics
    • /
    • v.22 no.1
    • /
    • pp.55-61
    • /
    • 2014
  • Panax ginseng is a medicinal herb that is used worldwide. Its medicinal effects are primarily attributable to ginsenosides located in the root, leaf, seed, and flower. The flower buds of Panax ginseng (FBPG) are rich in various bioactive ginsenosides, which exert immunomodulatory and anti-inflammatory activities. The aim of the present study was to assess the effect of 18 ginsenosides isolated from steamed FBPG on the transcriptional activity of NF-${\kappa}B$ and the expression of tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$)-stimulated target genes in liver-derived cell lines. Noticeably, the ginsenosides $Rk_3$ and $Rs_4$ exerted the strongest activity, inhibiting NF-${\kappa}B$ in a dose-dependent manner. SF and $Rg_6$ also showed moderately inhibitory effects. Furthermore, these four compounds inhibited the TNF-${\alpha}$-induced expression of IL8, CXCL1, iNOS, and ICAM1 genes. Consequently, ginsenosides purified from steamed FBPG have therapeutic potential in TNF-${\alpha}$-mediated diseases such as chronic hepatic inflammation.

Effects of starvation-induced negative energy balance on endoplasmic reticulum stress in the liver of cows

  • Islam, Md Aminul;Adachi, Shuya;Shiiba, Yuichiroh;Takeda, Ken-ichi;Haga, Satoshi;Yonekura, Shinichi
    • Animal Bioscience
    • /
    • v.35 no.1
    • /
    • pp.22-28
    • /
    • 2022
  • Objective: Endoplasmic reticulum (ER) stress engages the unfolded protein response (UPR) that serves as an important mechanism for modulating hepatic fatty acid oxidation and lipogenesis. Chronic fasting in mice induced the UPR activation to regulate lipid metabolism. However, there is no direct evidence of whether negative energy balance (NEB) induces ER stress in the liver of cows. This study aimed to elucidate the relationship between the NEB attributed to feed deprivation and ER stress in bovine hepatocytes. Methods: Blood samples and liver biopsy tissues were collected from 6 non-lactating cows before and after their starvation for 48 h. The blood non-esterified fatty acids (NEFA), β-hydroxybutyric acid (BHBA) and glucose level were analyzed. Real-time quantitative polymerase chain reaction and Western blotting were used to explore the regulation of genes associated with UPR and lipid metabolism. Results: The starvation increased the plasma BHBA and NEFA levels and decreased the glucose level. Additionally, the starvation caused significant increases in the mRNA expression level of spliced X-box binding protein 1 (XBP1s) and the protein level of phosphorylated inositol-requiring kinase 1 alpha (p-IRE1α; an upstream protein of XBP1) in the liver. The mRNA expression levels of peroxisome proliferator-activated receptor alpha and its target fatty acid oxidation- and ketogenesis-related genes were significantly upregulated by the starvation-mediated NEB. Furthermore, we found that the mRNA expression levels of lipogenic genes were not significantly changed after starvation. Conclusion: These findings suggest that in the initial stage of NEB in dairy cows, the liver coordinates an adaptive response by activating the IRE1 arm of the UPR to enhance ketogenesis, thereby avoiding a fatty liver status.

Kisspeptin-10 Enhanced Egg Production in Quails Associated with the Increase of Triglyceride Synthesis in Liver

  • Wu, J.;Fu, W.;Huang, Y.;Ni, Y.;Zhao, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.8
    • /
    • pp.1080-1088
    • /
    • 2013
  • Our previous results showed that kisspeptin-10 (Kp-10) injections via intraperitoneal (i.p.) once daily for three weeks notably promoted the egg laying rate in quails. In order to investigate the mechanism behind the effects of Kp-10 on enhancing the egg laying rate in birds, this study focused on the alternations of lipids synthesis in liver after Kp-10 injections. 75 female quails (22 d of age) were allocated to three groups randomly, and subjected to 0 (control, Con), 10 nmol (low dosage, L) and 100 nmol (high dosage, H) Kp-10 injections via i.p. once daily for three weeks, respectively. At d 52, quails were sacrificed and sampled for further analyses. Serum $E_2$ concentration was increased by Kp-10 injections, and reached statistical significance in H group. Serum triglyceride (TG) concentrations were increased by 46.7% in L group and 36.8% in H group, respectively, but did not reach statistical significance, and TG contents in liver were significantly elevated by Kp-10 injections in a dose-dependent manner. Serum total cholesterol (Tch) concentrations significantly decreased in H group, while in H group the hepatic Tch content was markedly increased. The level of non-esterified fatty acid (NEFA), apolipoprotein A1 and B (apoA1 and apoB) were not altered by Kp-10 injections. The genes expression of sterol regulatory element binding protein-1 (SREBP-1), fatty acid synthetase (FAS), apolipoprotein VLDL-II (apoVLDL-II), cholesterol $7{\alpha}$-hydroxylase (CYP7A1) and vitellogenin II (VTG-II) were significantly up-regulated by high but not low dosage of Kp-10 injection compared to the control group. However, the expression of SREBP-2, acetyl-CoA carboxylase ($ACC_{\alpha}$), malic enzyme (ME), stearoyl-CoA (${\Delta}9$) desaturase 1 (SCD1), apolipoprotein A1 (apoA1), fatty acid binding protein 2 (FABP2), 3-hydroxyl-3-methyl glutaryl-coenzyme A reductases (HMGCR), estrogen receptor ${\alpha}$, ${\beta}$($ER{\alpha}$ and ${\beta}$) mRNA were not affected by Kp-10 treatment. In line with hepatic mRNA abundance, hepatic SREBP1 protein content was significantly higher in H group. Although the mRNA expression was not altered, the content of $ER{\alpha}$ protein in liver was also significantly increased in H group. However, SREBP-2 protein content in liver was not changed by Kp-10 treatment. In conclusion, exogenous Kp-10 consecutive injections during juvenile stage significantly advanced the tempo of egg laying in quails, which was associated with the significant elevation in hepatic lipids synthesis and transport.

Bioinformatics for the Korean Functional Genomics Project

  • Kim, Sang-Soo
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2000.11a
    • /
    • pp.45-52
    • /
    • 2000
  • Genomic approach produces massive amount of data within a short time period, New high-throughput automatic sequencers can generate over a million nucleotide sequence information overnight. A typical DNA chip experiment produces tens of thousands expression information, not to mention the tens of megabyte image files, These data must be handled automatically by computer and stored in electronic database, Thus there is a need for systematic approach of data collection, processing, and analysis. DNA sequence information is translated into amino acid sequence and is analyzed for key motif related to its biological and/or biochemical function. Functional genomics will play a significant role in identifying novel drug targets and diagnostic markers for serious diseases. As an enabling technology for functional genomics, bioinformatics is in great need worldwide, In Korea, a new functional genomics project has been recently launched and it focuses on identi☞ing genes associated with cancers prevalent in Korea, namely gastric and hepatic cancers, This involves gene discovery by high throughput sequencing of cancer cDNA libraries, gene expression profiling by DNA microarray and proteomics, and SNP profiling in Korea patient population, Our bioinformatics team will support all these activities by collecting, processing and analyzing these data.

  • PDF

Kaurenoic acid, a natural substance from traditional herbal medicine, alleviates palmitate induced hepatic lipid accumulation via Nrf2 activation

  • Han, Changwoo
    • The Journal of Korean Medicine
    • /
    • v.41 no.4
    • /
    • pp.64-71
    • /
    • 2020
  • Objectives: This study was done to look into whether Nrf2 take some role in the anti-lipogenic effect of kaurenoic acid in a nonalcoholic fatty liver disease (NAFLD) cellular model. Materials and Methods: We measured the effect of kaurenoic acid on intracellular steatosis and Nrf2 activation. Next, the effect of kaurenoic acid on SREBP-1c and some lipogenic genes in palmitate treated HepG2 cells with or without Nrf2 silencing. Results: The increased SREBP-1c expression was significantly decreased by concomitant kaurenoic acid treatment in non-targeting negative control siRNA transfected HepG2 cells. However, kaurenoic acid did not significantly inhibited increased SREBP-1c level in Nrf2 specific siRNA transfected HepG2 cells Conclusions: Kaurenoic acid has a potential to activate Nrf2, which may suppress SREBP-1c mediated intracellular steatosis in HepG2 cells.

Gene Expression Profiling in Diethylnitrosamine Treated Mouse Liver: From Pathological Data to Microarray Analysis (Diethylnitrosamine 처리 후 병리학적 결과를 기초로 한 마우스 간에서의 유전자 발현 분석)

  • Kim, Ji-Young;Yoon, Seok-Joo;Park, Han-Jin;Kim, Yong-Bum;Cho, Jae-Woo;Koh, Woo-Suk;Lee, Michael
    • Toxicological Research
    • /
    • v.23 no.1
    • /
    • pp.55-63
    • /
    • 2007
  • Diethylnitrosamine (DEN) is a nitrosamine compound that can induce a variety of liver lesions including hepatic carcinoma, forming DNA-carcinogen adducts. In the present study, microarray analyses were performed with Affymetrix Murine Genome 430A Array in order to identify the gene-expression profiles for DEN and to provide valuable information for the evaluation of potential hepatotoxicity. C57BL/6NCrj mice were orally administered once with DEN at doses of 0, 3, 7 and 20 mg/kg. Liver from each animal was removed 2, 4, 8 and 24 hrs after the administration. The histopathological analysis and serum biochemical analysis showed no significant difference in DEN-treated groups compared to control group. Conversely, the principal component analysis (PCA) profiles demonstrated that a specific normal gene expression profile in control groups differed clearly from the expression profiles of DEN-treated groups. Within groups, a little variance was found between individuals. Student's t-test on the results obtained from triplicate hybridizations was performed to identify those genes with statistically significant changes in the expression. Statistical analysis revealed that 11 genes were significantly downregulated and 28 genes were upregulated in all three animals after 2 h treatment at 20 mg/kg. The upregulated group included genes encoding Gdf15, JunD1, and Mdm2, while the genes including Sox6, Shmt2, and SIc6a6 were largely down regulated. Hierarchical clustering of gene expression also allowed the identification of functionally related clusters that encode proteins related to metabolism, and MAPK signaling pathway. Taken together, this study suggests that match with a toxicant signature can assign a putative mechanism of action to the test compound if is established a database containing response patterns to various toxic compounds.

The Effect of High-Sucrose and High-Fat Diets on the Expression of Uncoupling Proteins (UCPs) mRNA Levels in Mice

  • Sohn, Hee-Sook;Nam, Ji-hyun;Cha, Youn-Soo
    • Nutritional Sciences
    • /
    • v.7 no.2
    • /
    • pp.70-75
    • /
    • 2004
  • The objective of this study was to examine diet-induced changes in the expression of UCP2 mRNA in the liver and UCP3 mRNA in the skeletal muscle of mice fed a high-sucrose or high-fat diet. Male ICR mice, aged 4 weeks, were divided into three dietary groups and fed control (N) or modified AIN-76 high-sucrose (US) or high-fat (HF) diets for 12 weeks. The serum total cholesterol (TC) and LDL-cholesterol concentrations of the HF group were significantly higher than those of the N and HS groups. The hepatic TC and triglyceride contents of the HS and HF groups were also significantly higher than those of the N group. The HS diet group had higher serum leptin and insulin levels compared to those of the HF group. Hepatic UCP2 mRNA expression was significantly higher in the HS group than in the N group, but the level in the HF group did not differ from that of the N group. Muscular UCP3 mRNA level was significantly higher in the HF group and especially in the HS group than in N the group. We observed that two gene (UCP2, 3) levels exhibited a similar tendency. These results suggest that UCPs mRNA levels and energy expenditure may be altered or controlled by various dietary patterns. Further research is needed to elucidate the effects of diet on the regulation of many obesity-related genes.

Alkylglyceronephosphate Synthase (AGPS) Alters Lipid Signaling Pathways and Supports Chemotherapy Resistance of Glioma and Hepatic Carcinoma Cell Lines

  • Zhu, Yu;Liu, Xing-Jun;Yang, Ping;Zhao, Meng;Lv, Li-Xia;Zhang, Guo-Dong;Wang, Qin;Zhang, Ling
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.7
    • /
    • pp.3219-3226
    • /
    • 2014
  • Chemotherapy continues to be a mainstay of cancer treatment, although drug resistance is a major obstacle. Lipid metabolism plays a critical role in cancer pathology, with elevated ether lipid levels. Recently, alkylglyceronephosphate synthase (AGPS), an enzyme that catalyzes the critical step in ether lipid synthesis, was shown to be up-regulated in multiple types of cancer cells and primary tumors. Here, we demonstrated that silencing of AGPS in chemotherapy resistance glioma U87MG/DDP and hepatic carcinoma HepG2/ADM cell lines resulted in reduced cell proliferation, increased drug sensitivity, cell cycle arrest and cell apoptosis through reducing the intracellular concentration of lysophosphatidic acid (LPA), lysophosphatidic acid-ether (LPAe) and prostaglandin E2 (PGE2), resulting in reduction of LPA receptor and EP receptors mediated PI3K/AKT signaling pathways and the expression of several multi-drug resistance genes, like MDR1, MRP1 and ABCG2. ${\beta}$-catenin, caspase-3/8, Bcl-2 and survivin were also found to be involved. In summary, our studies indicate that AGPS plays a role in cancer chemotherapy resistance by mediating signaling lipid metabolism in cancer cells.