• 제목/요약/키워드: Hepatic Genes

검색결과 201건 처리시간 0.018초

Hepatic transcriptional changes in critical genes for gluconeogenesis following castration of bulls

  • Fassah, Dilla Mareistia;Jeong, Jin Young;Baik, Myunggi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권4호
    • /
    • pp.537-547
    • /
    • 2018
  • Objective: This study was performed to understand transcriptional changes in the genes involved in gluconeogenesis and glycolysis pathways following castration of bulls. Methods: Twenty Korean bulls were weaned at average 3 months of age, and castrated at 6 months. Liver tissues were collected from bulls (n = 10) and steers (n = 10) of Korean cattle, and hepatic gene expression levels were measured using quantitative real-time polymerase chain reaction. We examined hepatic transcription levels of genes encoding enzymes for irreversible reactions in both gluconeogenesis and glycolysis as well as genes encoding enzymes for the utilization of several glucogenic substrates. Correlations between hepatic gene expression and carcass characteristics were performed to understand their associations. Results: Castration increased the mRNA (3.6 fold; p<0.01) and protein levels (1.4 fold; p<0.05) of pyruvate carboxylase and mitochondrial phosphoenolpyruvate carboxykinase genes (1.7 fold; p<0.05). Hepatic mRNA levels of genes encoding the glycolysis enzymes were not changed by castration. Castration increased mRNA levels of both lactate dehydrogenase A (1.5 fold; p<0.05) and lactate dehydrogenase B (2.2 fold; p<0.01) genes for lactate utilization. Castration increased mRNA levels of glycerol kinase (2.7 fold; p<0.05) and glycerol-3-phosphate dehydrogenase 1 (1.5 fold; p<0.05) genes for glycerol utilization. Castration also increased mRNA levels of propionyl-CoA carboxylase beta (mitochondrial) (3.5 fold; p<0.01) and acyl-CoA synthetase short chain family member 3 (1.3 fold; p = 0.06) genes for propionate incorporation. Conclusion: Castration increases transcription levels of critical genes coding for enzymes involved in irreversible gluconeogenesis reactions from pyruvate to glucose and enzymes responsible for incorporation of glucogenic substrates including lactate, glycerol, and propionate. Hepatic gluconeogenic gene expression levels were associated with intramuscular fat deposition.

Expression of Hepatic Vascular Stress Genes Following Ischemiai/Reperfusion and Subsequent Endotoxemia

  • Kim, Sung-Ho;Lee, Sun-Mee
    • Archives of Pharmacal Research
    • /
    • 제27권7호
    • /
    • pp.769-775
    • /
    • 2004
  • Hepatic ischemia and reperfusion (l/R) predisposes the liver to secondary stresses such as endotoxemia, possibly via dysregulation of the hepatic microcirculation secondary to an imbalanced regulation of the vascular stress genes. In this study, the effect of hepatic I/R on the hepatic vasoregulatory gene expression in response to endotoxin was determined. Rats were subjected to 90 min of hepatic ischemia and 6 h of reperfusion. Lipopolysaccharide (LPS, 1 mg/kg) was injected intraperitoneally after reperfusion. Plasma and liver samples were obtained 6 h after reperfusion for serum aminotransferase assays and RT-PCR analysis of the mRNA for the genes of interest: endothelin-1 (ET-1), its receptors $ET_A$ and $ET_B$, endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), heme oxygenase-1 (HO-1), cyciooxygenase-2 (COX-2), and tumor necrosis factor-a (TNF-${\alpha}$). The activities of serum aminotransferases were significantly increased in the I/R group. This increase was markedly potentiated by LPS treatment. The ET-1 mRNA was increased by LPS alone, and this increase was significantly greater in both the I/R alone and I/R + LPS groups compared to the sham. There were no significant differences in ETA receptor mRNA levels among any of the experimental groups. $ET_B$ mRNA was increased by both LPS alone and I/R alone, with no significant difference between the I/R alone and I/R + LPS groups. The eN OS and HO-1 transcripts were increased by I/R alone and further increased by I/R + LPS. The iNOS mRNA levels were increased by I/R alone, but increased significantly more by both LPS alone and I/R + LPS compared to I/R alone. The TNF-${\alpha}$ mRNA levels showed no change with I/R alone, but were increased by both LPS alone and I/R + LPS. The COX-2 expression was increased significantly by I/R alone and significantly more by I/R + LPS. Taken collectively, significantly greater induction of the vasodilator genes over the constriction forces was observed with I/R + LPS. These results may partly explain the increased susceptibility of ischemic livers to injury as a result of endotoxemia.

The Effect of Dietary Docosahexaenoic Acid Enrichment on the Expression of Porcine Hepatic Genes

  • Chang, W.C.;Chen, C.H.;Cheng, W.T.K.;Ding, S.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권5호
    • /
    • pp.768-774
    • /
    • 2007
  • To study the effect of dietary docosahexaenoic acid (DHA) enrichment on the expression of hepatic genes in pigs, weaned, crossbred pigs (30 d old) were fed diets supplemented with either 2% tallow or DHA oil for 18 d. Hepatic mRNA was extracted. Suppression subtractive hybridization was used to explore the hepatic genes that were specifically regulated by dietary DHA enrichment. After subtraction, we observed 288 cDNA fragments differentially expressed in livers from pigs fed either 2% DHA oil or 2% tallow for 18 d. After differential screening, 7 genes were found to be differentially expressed. Serum amyloid A protein 2 (SAA2) was further investigated because of its role in lipid metabolism. Northern analysis indicated that hepatic SAA2 was upregulated by dietary DHA enrichment (p<0.05). In a second experiment, feeding 10% DHA oil for 2d significantly increased the expression of SAA2 (compared to the 10% tallow group; p<0.05). The porcine SAA2 full length cDNA sequence was cloned and the sequence was compared to the human and mouse sequences. The homology of the SAA2 amino acid sequence between pig and human was 73% and between pig and mouse was 62%. There was a considerable difference in SAA2 sequences among these species. Of particular note was a deletion of 8 amino acids, in the pig compared to the human. This fragment is a specific characteristic for the SAA subtype that involved in acute inflammation reaction. Similar to human and mouse, porcine SAA2 was highly expressed in the liver of pigs. It was not detectable in the skeletal muscle, heart muscle, spleen, kidney, lung, and adipose tissue. These data suggest that SAA2 may be involved in mediation of the function of dietary DHA in the liver of the pig, however, the mechanism is not yet clear.

Favorable Hepatoprotective Effects of Gongjin-dan on the Acute Ethanol-induced Liver Damaged C57BL/6 Mice

  • Han, Moo Gyu;Kim, Kyung Soon;Joo, Jeong Hyun;Choi, Hong Sik;Kim, Seung Mo
    • 동의생리병리학회지
    • /
    • 제30권4호
    • /
    • pp.279-288
    • /
    • 2016
  • To observe the potential hepatoprotective effects of Gongjin-dan on the acute ethanol (EtOH)-induced liver damages in C57BL/6 mice with its possible action mechanisms. EtOH-mediated acute hepatic damages were induced by oral administration of EtOH total 3 doses. The changes on the body weight, liver weight, albumin, TG, AST, ALP, ALT, hepatic TG contents, hepatic antioxidant defense system, TNF-α, CYP 2E1 activity and mRNA expressions of hepatic lipogenic genes - SREBP-1c, SCD1, ACC1, FAS, PPARγ and DGAT2 or genes involved in fatty acid oxidation - PPARα, ACO and CPT1 were observed with final liver histopathological inspections after 15 days of continuous administration of silymarin 200 mg/kg, Gongjin-dan (GJD) 400, 200 and 100 mg/kg. The results were compared with silymarin 200 mg/kg treated mice. Marked decreases of body and liver weights, increases of serum AST, ALT, Albumin and TG levels, hepatic TG contents, TNF-α level, CYP 2E1 activity and mRNA expressions of hepatic lipogenic genes or decreases mRNA expressions of genes involved in fatty acid oxidation were observed with histopathological changes related hepatosteatosis increases of immunolabelled hepatocytes, as the results of a binge drinking of EtOH in the present study. Also destroys of hepatic antioxidant defense systems were demonstrated in EtOH control mice as compared with intact vehicle control mice, respectively. The results suggest that oral administration of 400, 200 and 100 mg/kg of GJD favorably protected the liver damages from acute mouse EtOH intoxications.

Effect of Korean pine nut oil on hepatic iron, copper, and zinc status and expression of genes and proteins related to iron absorption in diet-induced obese mice

  • Shin, Sunhye;Lim, Yeseo;Chung, Jayong;Park, Soyoung;Han, Sung Nim
    • Journal of Nutrition and Health
    • /
    • 제54권5호
    • /
    • pp.435-447
    • /
    • 2021
  • Purpose: Body adiposity is negatively correlated with hepatic iron status, and Korean pine nut oil (PNO) has been reported to reduce adiposity. Therefore, we aimed to study the effects of PNO on adiposity, hepatic mineral status, and the expression of genes and proteins involved in iron absorption. Methods: Five-week-old male C57BL/6 mice were fed a control diet containing 10% kcal from PNO (PC) or soybean oil (SBO; SC), or a high-fat diet (HFD) containing 35% kcal from lard and 10% kcal from PNO (PHFD) or SBO (SHFD). Hepatic iron, copper, and zinc content; and expression of genes and proteins related to iron absorption were measured. Results: HFD-fed mice had a higher white fat mass (2-fold; p < 0.001), lower hepatic iron content (25% lower; p < 0.001), and lower hepatic Hamp (p = 0.028) and duodenal Dcytb mRNA levels (p = 0.037) compared to the control diet-fed mice. Hepatic iron status was negatively correlated with body weight (r = -0.607, p < 0.001) and white fat mass (r = -0.745, p < 0.001). Although the PHFD group gained less body weight (18% less; p < 0.05) and white fat mass (18% less; p < 0.05) than the SHFD group, the hepatic iron status impaired by the HFD feeding did not improve. The expression of hepatic and duodenal ferroportin protein was not affected by the fat amount or the oil type. PNO-fed mice had significantly lower Slc11a2 (p = 0.022) and Slc40a1 expression (p = 0.027) compared to SBO-fed mice. However, the PC group had a higher Heph expression than the SC group (p < 0.05). The hepatic copper and zinc content did not differ between the four diet groups, but hepatic copper content adjusted by body weight was significantly lower in the HFD-fed mice compared to the control diet-fed mice. Conclusion: HFD-induced obesity decreased hepatic iron storage by affecting the regulation of genes related to iron absorption; however, the 18% less white fat mass in the PHFD group was not enough to improve the iron status compared to the SHFD group. The hepatic copper and zinc status was not altered by the fat amount or the oil type.

Gene Expression Analysis of Hepatic Response Induced by Gentamicin in Mice

  • Oh, Jung-Hwa;Park, Han-Jin;Hwang, Ji-Yoon;Jeong, Sun-Young;Lim, Jung-Sun;Kim, Yong-Bum;Yoon, Seok-Joo
    • Molecular & Cellular Toxicology
    • /
    • 제3권1호
    • /
    • pp.60-67
    • /
    • 2007
  • Gentamicin is a broad-spectrum aminoglycoside antibiotic used in the treatment of bacterial infection. Although side effects of gentamicin such as nephrotoxicity and ototoxicity have been investigated, the information on the hepatic effects of gentamicin is still limited. In the present study, gene expression profiles were analyzed in the liver of gentamicin treated mice using Affymetrix GeneChip$^{(R)}$ Mouse Expression 430A 2.0 Array. Totally, 400 genes were identified as being either up- or down-regulated over 1.5-fold changes (P<0.01) in the liver of gentamicin treated mice. Among these deregulated genes, 16 up-regulated genes mainly involved in transport (Kif5b, Pex14, Rab14, Clcn3, and Necap1) and 20 down-regulated genes involved in lipid and other metabolisms (Hdlbp, Gm2a, Uroc1, and Dak) were selected using k-means clustering algorithm. The functional classification of differentially expressed genes represented that several stress-related genes were regulated in the liver by gentamicin treatment. This data may contribute in understanding the molecular mechanism in the liver of gentamicin treated mice.

Identification of Expressed Sequence Tags of Genes Expressed Highly in the Activated Hepatic Stellate Cell

  • Lee Sung Hee;Chaen Keon-Sang;Sohn Dong Hwan
    • Archives of Pharmacal Research
    • /
    • 제27권4호
    • /
    • pp.422-428
    • /
    • 2004
  • Expressed sequence tags (ESTs) were generated from two 3'-directed CDNA libraries constructed from quiescent and activated rat hepatic stellate cell (HSC) to analyze the expression profiles of active genes in both cells. From quiescent and activated HSC, 694 ESTs and 779 ESTs, respectively, were obtained after excluding those having shorter than 30 bp. Amonq ESTs obtained from quiescent and activated HSC, 68 and 73 kinds of ESTs (186 clones and 236 clones), respectively, appeared more than once, implying that their genes are expressed highly in each cell type. 52 among 73 ESTs appeared only in the activated HSC 47 amonq 68 ESTs only in the normal HSC, and 21 in both cells. The genes of these 52 ESTs were assumed to be expressed more highly in the activated HSC. To confirm the high expression of genes of which the ESTs appeared more than twice in the activated HSC, northern hybridization was carried out with RNAs derived from rat normal and fibrotic liver using each of 18 EST DNAs as probe. 13 ESTs showed more intense bands with RNA isolated from the fibrotic liver than normal liver. From these results, we confirm the positive correlation between abundance of transcript in activated HSCs and the expression level in fibrotic liver, The expression profile of the transcripts serves as an important tool in understanding the biological properties of HSC.

The Herbal Composition Gangjihwan from Ephedra intermedia, Lithospermum erythrorhizon and Rheum palmatum Ameliorates Hepatic Inflammation and Fibrosis in Obese C57BL/6J Mice and HepG2 Cells

  • Yoon, Michung
    • 대한의생명과학회지
    • /
    • 제23권2호
    • /
    • pp.144-153
    • /
    • 2017
  • It was demonstrated that Gangjihwan (DF), which is the herbal composition composed of Ephedra intermedia, Lithospermum erythrorhizon, and Rheum palmatum, inhibits obesity and hepatic steatosis in high fat diet (HFD)-fed obese mice. The aim of this study was to determine the effects of DF on visceral obesity, hepatic inflammation and fibrosis and the mechanism of actions involved in this process using in vivo and in vitro approaches. DF was extracted with water (DF-FW), 30% grain alcohol (DF-GA30), and 70% grain alcohol (DF-GA70). Administration of DF to HFD-fed control mice decreased visceral tissue mass and visceral adipocyte size without adverse effects. Visceral fat mass was decreased by DF-GA30 and DF-GA70, and visceral adipocyte size by all three DF extracts compared with obese control mice. Histological analysis revealed that three kinds of DF extracts reduced toluidine blue-stained mast cells and collagen accumulation in the liver, the extents of which were most eminent in DF-GA70-treated mice. DF-GA70 decreased the mRNA levels of the inflammation ($TNF{\alpha}$ and VCAM-1), fibrosis (${\alpha}-SMA$), and apoptosis (caspase 3) genes, but increasing the anti-apoptosis gene (Bcl-2) mRNA levels in the liver of obese control mice. Consistent with the in vivo data, GA-70 also altered the expression of inflammation genes ($TNF{\alpha}$ and MCP-1) in HepG2 cells. These results indicate that DF not only inhibits visceral obesity, but also ameliorates visceral obesity-induced hepatic inflammation and fibrosis and that this process may be mediated by regulating the hepatic expression of inflammatory and fibrogenic genes.

Effects of Castration on Expression of Lipid Metabolism Genes in the Liver of Korean Cattle

  • Baik, Myunggi;Nguyen, Trang Hoa;Jeong, Jin Young;Piao, Min Yu;Kang, Hyeok Joong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권1호
    • /
    • pp.127-134
    • /
    • 2015
  • Castration induces the accumulation of body fat and deposition of intramuscular fat in Korean cattle, resulting in improved beef quality. However, little is known about the metabolic adaptations in the liver following castration. To understand changes in lipid metabolism following castration, hepatic expression levels of lipid metabolism genes were compared between Korean bulls and steers. Steers had higher (p<0.001) hepatic lipids contents and higher (p<0.01) mRNA levels of lipogenic acetyl-CoA carboxylase. This differential gene expression may, in part, contribute to increased hepatic lipid content following the castration of bulls. However, we found no differences in the hepatic expression levels of genes related to triglyceride synthesis (mitochondrial glycerol-3-phosphate acyltransferase, diacylglycerol O-acyltransferase 1 and 2) and fatty acid (FA) oxidation (carnitine palmitoyltransferase 1A, C-4 to C-12 straight chain acyl-CoA dehydrogenase, very long chain acyl-CoA dehydrogenase) between bulls and steers. No differences in gene expression for very-low-density lipoprotein (VLDL) secretion, including apolipoprotein B mRNA and microsomal triglyceride transfer protein (MTTP) protein, were observed in the liver although MTTP mRNA levels were higher in steers compared to bulls. In conclusion, FA synthesis may contribute to increased hepatic lipid deposition in steers following castration. However, hepatic lipid metabolism, including triglyceride synthesis, FA oxidation, and VLDL secretion, was not significantly altered by castration. Our results suggest that hepatic lipid metabolism does not significantly contribute to increased body fat deposition in steers following castration.

Induction of heme oxygenase-1 with dietary quercetin reduces obesity-induced hepatic inflammation through macrophage phenotype switching

  • Kim, Chu-Sook;Choi, Hye-Seon;Joe, Yeonsoo;Chung, Hun Taeg;Yu, Rina
    • Nutrition Research and Practice
    • /
    • 제10권6호
    • /
    • pp.623-628
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: Obesity-induced steatohepatitis accompanied by activated hepatic macrophages/Kupffer cells facilitates the progression of hepatic fibrinogenesis and exacerbates metabolic derangements such as insulin resistance. Heme oxyganase-1 (HO-1) modulates tissue macrophage phenotypes and thus is implicated in protection against inflammatory diseases. Here, we show that the flavonoid quercetin reduces obesity-induced hepatic inflammation by inducing HO-1, which promotes hepatic macrophage polarization in favor of the M2 phenotype. MATERIALS/METHODS: Male C57BL/6 mice were fed a regular diet (RD), high-fat diet (HFD), or HFD supplemented with quercetin (HF+Que, 0.5g/kg diet) for nine weeks. Inflammatory cytokines and macrophage markers were measured by ELISA and RT-PCR, respectively. HO-1 protein was measured by Western blotting. RESULTS: Quercetin supplementation decreased levels of inflammatory cytokines ($TNF{\alpha}$, IL-6) and increased that of the anti-inflammatory cytokine (IL-10) in the livers of HFD-fed mice. This was accompanied by upregulation of M2 macrophage marker genes (Arg-1, Mrc1) and downregulation of M1 macrophage marker genes ($TNF{\alpha}$, NOS2). In co-cultures of lipid-laden hepatocytes and macrophages, treatment with quercetin induced HO-1 in the macrophages, markedly suppressed expression of M1 macrophage marker genes, and reduced release of MCP-1. Moreover, these effects of quercetin were blunted by an HO-1 inhibitor and deficiency of nuclear factor E2-related factor 2 (Nrf2) in macrophages. CONCLUSIONS: Quercetin reduces obesity-induced hepatic inflammation by promoting macrophage phenotype switching. The beneficial effect of quercetin is associated with Nrf2-mediated HO-1 induction. Quercetin may be a useful dietary factor for protecting against obesity-induced steatohepatitis.