• Title/Summary/Keyword: Heparin affinity chromatography

Search Result 16, Processing Time 0.023 seconds

Biochemical Characterization of Phospholipase C$\delta$from liver of Mud loach (Misgurnus mizolepis) (미꾸라지 간으로부터 포스포리파아제 C델타 단백질의 생화학적 특성)

  • Seo, Jung-Soo;Lim, Sang-Uk;Kim, Na-Young;Lee, Sang-Hwan;Oh, Hyun-Suk;Lee, Hyung-Ho;Chung, Joon-Ki
    • Journal of fish pathology
    • /
    • v.18 no.1
    • /
    • pp.67-80
    • /
    • 2005
  • Phosphoinositide-specific phospholipase $C\delta$ $PLC\delta$) plays an important role in many cellular responses and is involved in the production of second messenger. The present study was conducted to obtain the biochemical characteristics of the expressed recombinant $PLC\delta$ in E. coli cloned from Misgurnus mizolepis and partially purified $PLC\delta$ enzymes from liver tissues of M. mizolepis (wild ML-$PLC\delta$). The ML $PLC\delta$ gene was cloned and expressed under the previous report (Kim et al., 2004), and purified the recombinant protein by successive chromatography using $Ni^{2+}$-NTA affinity column and gel iltration FPLC column. The wild ML-$PLC\delta$ protein was solublized with 2 M KCI and purified by successive chromatography on open heparin-Sephagel and analytical TSKgel heparin-5PW. Both the recombinant and wild ML-$PLC\delta$ form of protein showed a concentration-dependent PLC activity to phosphatidylinositol 4,5-bis-phosphate (PIP$_2$) or phosphatidylinositol (PI). Its activity was absolutely $Ca^{2+}$- dependant, which was similar to mammalian $PLC\delta$ isozymes. Maximal PI-hydrolytic activations of recombinant and wild ML- TEX>$PLC\delta$ was at pH 7.0 and pH 7.5, respectively. In addition, the enzymatic activities of recombinant and wild ML-$PLC\delta$ were increased in concentration-dependent manner by detergent, such as sodium deoxycholate SDC), phosphatidylethanolamine (PE) and phosphatidylcholine (PC). The activities decreased in contrast by a polyamine, such as spermine. Western blotting showed that several types of $PLC\delta$ isozymes exist in various organs. Taken together our results, it suggested that the biochemical characteristics of ML-$PLC\delta$ are similar with those of mammalian $PLC\delta1$ and ${\delta}3$ isozymes.

Purification and Characterization of an Exo-polygalacturonase from Botrytis cinerea

  • Lee, Tae-Ho;Kim, Byung-Young;Chung, Young-Ryun;Lee, Sang-Yeol;Lee, Chang-Won;Kim, Jae-Won
    • Journal of Microbiology
    • /
    • v.35 no.2
    • /
    • pp.134-140
    • /
    • 1997
  • Botrytis cinerea T91-1 has been shown to produce at least four different polygalacturonases into a liquid medium containing citrus pectin, a carbon sousrce. One of the enzymes, which had an apparent molecular weight of 66 kDa estimated by denatured polyacrylamide gel electrophoresis, was purified to electrophoretic homogeneity by a series of procedures including a cetone precipitation, ion exchange, heparin affinity, and reverse phase column chromatographies. The molecular weight of native enzyme was determined to be 64 kDa by gel permeation chromatography indicating the enzyme to be a single polypeptide chain. By viscometric analysis, the enzyme was revealed as exo-polygalacturonase. The enzyme activity was inhibited by divalent cations such as $Ca^{2+}$, $Mg^{2+}$, and Cu$^{2+}$. Km and Vmax for polygalacturonic acid hydrolysis were 0.33 mg/ml and 28.6 nM/min, respectively. The optimum temperature for enzymatic activity was 5$0^{\circ}C$. And the enzyme showed optimal pH values between 4.0 and 5.0. The enzyme was stable upto 12 hours in the range of pH 3 to 8 and at temperature below 3$0^{\circ}C$.

  • PDF

Resistance Mechanism of Acinetobacter spp. Strains Resistant to DW-116, a New Quinolone

  • Choi, Keum-Hwa;Baek, Moon-Chang;Kim, Byong-Kak;Choi, Eung-Chil
    • Archives of Pharmacal Research
    • /
    • v.21 no.3
    • /
    • pp.310-314
    • /
    • 1998
  • DW-116 is a new fluoroquinolone antimicrobial agent with a broad spectrum. In order to elucidate the resistance mechanism to DW-116 in Acinetobacter spp. bacteria, total chromosomal DNA was isolated from 10 strains of Acinetobacter spp. resistant to DW-116. Quinolone resistance determinant region (QRDR) of DNA gyrase gene was amplified by PCR. The 345 bp nucleotide fragment yielded was inserted into pKF 3 which was used as the vector. Comparisons of the DNA sequences of 8 strains with that of the wild type strain revealed a Ser-83 to Leu mutation in mutants and all ten strains contained one silent mutation$(T{\rightarrow}G)$in QRDR. From Acinetobacter MB4-8 strain, DNA gyrase was isolated and purified, through novobiocin-sepharose, heparin-sepharose affinity column chromatography. The enzyme was composed of two subunits and the molecular mass of subunits A and B were 75.6 and 51.9 kDa, respectively. The supercoiling activity of the reconstituted DNA gyrase composed of subunit A from Acinetobacter MB4-8 and subunit B from E. coli was not inhibited by $128{\mu}\textrm{g}$ml of ciprofloxacin. It might be said that one of the resistance mechanisms to DW-116 in Acinetohacter MB4-8 was subunit A alteration of DNA gyrase.

  • PDF

Purification and Characterization of Endo-polygalacturonase Produced by Plant Pathogenic fungus, Botrytis cinerea (식물 병원진균 Botrytis cinerea가 생산하는 Endo-polygalacturonase의 순수정제와 특성)

  • Kim, Byung-Young;Lee, Tae-Ho;Rha, Eu-Gene;Chung, Young-Ryun;Lee, Chang-Won;Kim, Jae-Won
    • The Korean Journal of Mycology
    • /
    • v.25 no.4 s.83
    • /
    • pp.330-339
    • /
    • 1997
  • Botrytis cinerea T91-1 has shown to produce at least four different polygalacturonases in a liquid medium containing citrus pectin as a carbon source. One of the enzymes, its molecular weight was estimated as 37 kDa by denatured polyacrylamide gel electrophoresis, was purified by a series of procedures including acetone precipitation, ion exchange, heparin affinity, and reverse phase column chromatographies. By viscometric analysis, the enzyme was revealed as an endo-polygalacturonase. The enzyme activity was inhibited by divalent cations such as $Ca^{2+}$, $Co^{2+}$, and $Cu^{2+}$. Km and Vmax for polygalacturonic acid hydrolysis were 0.33 mg/ml and 28.6 nM/min, respectively. The optimum temperature for enzymatic activity was $55^{\circ}C$ and the enzyme showed optimal pH values between 4.0 and 4.5. The enzyme was stable up to 12 hours in the range of pH 4 to 7 and at the temperature below $30^{\circ}C$. Amino acid sequence from N-terminal up to 6 amino acids determined by Edman degradation showed little homology with polygalacturonases from fungi and plants.

  • PDF

Purification and biological activity of recombinant human bone morphogenetic protein-2 produced by E. coli expression system (E. coli 발현 시스템에 의해 생산된 recombinant human bone morphogenetic protein-2의 정제와 생물학적 활성)

  • Choi, Kyung-Hee;Moon, Keumok;Kim, Soo-Hong;Yun, Jeong-Ho;Jang, Kyung-Lib;Cho, Kyoo-Sung
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.1
    • /
    • pp.41-50
    • /
    • 2008
  • Purpose: Bone morphogenetic protein-2(BMP-2) has been shown to possess significant osteoinducitve potential. There have been attempts to overcome a limitation of mass production, and economical efficiency of BMP. The aim of this study was to produce recombinant human BMP-2(rhBMP-2) from E. coli in a large scale and evaluate its biological activity. Materials and Methods: The E.coli strain BL21(DE3) was used as a host for rhBMP-2 production. Dimerized rhBMP-2 was purified by affinity chromatography using Heparin column. To determine the physicochemical properties of the rhBMP-2 expressed in E. coli, we examined the HPLC profile and performed Western blot analysis. The effect of the purified rhBMP-2 dimer on osteoblast differentiation was examined by alkaline phosphatase (ALP) activity and representing morphological change using C2C12 cell. Results: E. coli was genetically engineered to produce rhBMP-2 in a non-active aggregated form. We have established a method which involves refolding and purifying a folded rhBMP-2 dimer from non-active aggregates. The purified rhBMP-2 homodimer was characterized by SDS-PAGE as molecular weight of about 28kDa and eluted at 34% acetonitrile, 13.27 min(retention time) in the HPLC profile and detected at Western blot. The purified rhBMP-2 dimer stimulated ALP activity and induced the transformation from myogenic differentiation to osteogenic differentiation. Conclusion: rhBMP-2 was produced in E. coli using genetic engineering. The purified rhBMP-2 dimer stimulated ALP activity and induced the osteogenic differentiation of C2C12 cells.

Purification and Cellular Localization of Extracellular Nuclease of Serratia marcescens Expressed in Escherichia coli (대장균에 발현된 Serratia marcescens의 Nuclease의 정제와 세포내 분포)

  • Kim, Woe-Yeon;Lee, Hoon-Sil;Suh, Sook-Jae;Cho, Moo-Je;Lee, Sang-Yeol;Kim, Jae-Won
    • Korean Journal of Microbiology
    • /
    • v.32 no.2
    • /
    • pp.147-154
    • /
    • 1994
  • Nuclease was secreted to the environmental media from the Escherichia coli JM107 tranformant harboring the extracellular nuclease gene of Serratia marcescens in the plasmid of pNUC4. Under the growth conditions, the amount of secreted enzyme was increased in parallel with bacterial growth conditions, the amount of secreted enzyme was increased in parallel with bacterial growth. The enzyme was purified using chromatofraphic procedures of Matrex green gel and heparin agarose affinity gel, resulted in 50-fold purification with 15% recovery of the enzyme. The apparent molecular weight of the enzyme was estimated to be 29Kda by sodium dodecylsulfate denaturing gel electrophoresis. Using the purified enzyme, polyclonal antibody was obtained from the rabbit. The specificity of the antibody was confirmed by immunoblotting and immunoprecipitaion. For the investigation of cellular distribution of the enzyme, cells were fractionated into three fractions; cytoplasm, periplasm and extracellular fluid. While more than 80% of the enzymatic activity was detected in the extracellular fluid and periplasm, a little was found in the cytoplasm, indicating that the enzyme was likely to be immediately exported to the membrane for excretion after biosynthesis. These results were confirmed again by immunocytochemistry technique using the antibody.

  • PDF