• Title/Summary/Keyword: Hep G2 cell

Search Result 800, Processing Time 0.032 seconds

Antioxidant Effects of Eriodictyol on Hydrogen Peroxide-Induced Oxidative Stress in HepG2 Cells (산화스트레스가 유도된 HepG2 세포에서 Eriodictyol의 항산화 효과)

  • Joo, Tae-Woo;Hong, Sung-Hyun;Park, Sun-Young;Kim, Gur-Yoo;Jhoo, Jin-Woo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.4
    • /
    • pp.510-517
    • /
    • 2016
  • This study was conducted to investigate the antioxidant and hepatoprotective effects of eriodictyol compound against hydrogen peroxide-induced oxidative stress in HepG2 cells by measuring expression levels of antioxidant enzymes, liver function index enzyme activities, and inhibitory effects against reactive oxygen species (ROS) production. HepG2 cell viability was assessed using 3-(4,5-dimethyl thiazole-2-yl)-2,5-diphenyl tetrazolium bromide assay. In the concentration range of $10{\sim}50{\mu}g/mL$, eriodictyol displayed over 98% cell viability in HepG2 cells. The effects of increased gene expression on hydrogen peroxide-induced oxidative stress were analyzed by monitoring antioxidant enzyme (superoxide dismutase, SOD; catalase, CAT; glutathione peroxidase, GPx) gene expression levels using real-time PCR. Eriodictyol compound significantly increased gene expression levels of SOD, CAT, and GPx in a dose-dependent manner ($10{\sim}50{\mu}g/mL$). Hepatoprotective effects against hydrogen peroxide-induced oxidative stress were analyzed by monitoring glutamic oxaloacetic transaminase (GOT), lactate dehydrogenase (LDH), and gamma-glutamyl transferase (GGT) activities in HepG2 cell culture medium using a biochemistry analyzer. Eriodictyol compound significantly reduced GOT, LDH, and GGT activities in a dose-dependent manner in HepG2 cells. ROS level in HepG2 cells was analyzed by 2',7'-dichlorofluorescein fluorescence diacetate assay, and eriodictyol compound effectively reduced the intracellular ROS level in HepG2 cells. The results reveal that eriodictyol compound can be useful for development of effective antioxidant and hepatoprotective agents.

Propugnating Effect of Bark of Rhizophora mucronata Against Different Toxicants Viz Carbon Tetrachloride, Ethanol and Paracetamol on HepG2 Cell Lines

  • Jairaman, Chitra;Yacoob, Syed Ali Mohamed;Venkatraman, Anuradha;Nagarajan, Yogananth;Murugesan, Gnanadesigan
    • Journal of Pharmacopuncture
    • /
    • v.22 no.1
    • /
    • pp.41-48
    • /
    • 2019
  • Objective: The aim of the study was to evaluate the hepatoprotective activity of the bark extract (Ethanol: Water) in the ratio of (3:1) of Rhizophora mucronata (BERM) by intoxicating the $HepG_2$ cell lines with different toxicants viz, $CCL_4$, Ethanol and Paracetamol with different concentrations of the extract were used. The $HepG_2$ cell lines were subjected to MTT Assay for studying the cytotoxicity. Methods: $HepG_2$ cells were plated using 96 well plate in 10% bovine serum, exposed to different toxicants viz, 2% $CCl_4$, 60% Ethanol and 14 mM Paracetamol respectively. The various test concentrations (18.85, 37.5, 75, 150 and $300{\mu}g/ml$) of bark extract of Rhizophora mucronata was added and incubated for 24 hours. Medium was removed after incubation period and 0.5 mg/ml MTT(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) was added and again incubated for 4 hours at 37oC. Then MTT was removed the crystals was dissolved in DMSO and absorbance was measured at 570 nm. Results: The result showed that dose dependent increase in percentage of viability at the doses of 18.85, 37.5, 75, 150, $300{\mu}g/ml$. Te results for the $CCl_4$ intoxicated, at $300{\mu}g/ml$ of the concentration of the extract, the % of viable cells was found out to be 99.6%, for Ethanol intoxicated, 97.67%, and Paracetamol induced, 75.37%, IC50 was $21.53{\mu}g/ml$, $12.61{\mu}g/ml$ and $21.42{\mu}g/ml$ respectively. Conclusion: Thus, we conclude that, the extract possesses defensive effect against different toxicants and can be used as an alternate drug for hepatotoxicity.

Effect of Trichostatin A on Anti HepG2 Liver Carcinoma Cells: Inhibition of HDAC Activity and Activation of Wnt/β-Catenin Signaling

  • Shi, Qing-Qiang;Zuo, Guo-Wei;Feng, Zi-Qiang;Zhao, Lv-Cui;Luo, Lian;You, Zhi-Mei;Li, Dang-Yang;Xia, Jing;Li, Jing;Chen, Di-Long
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7849-7855
    • /
    • 2014
  • Purpose: To investigate the effect of deacetylase inhibitory trichostatin A (TSA) on anti HepG2 liver carcinoma cells and explore the underlying mechanisms. Materials and Methods: HepG2 cells exposed to different concentrations of TSA for 24, 48, or 72h were examined for cell growth inhibition using CCK8, changes in cell cycle distribution with flow cytometry, cell apoptosis with annexin V-FTIC/PI double staining, and cell morphology changes under an inverted microscope. Expression of ${\beta}$-catenin, HDAC1, HDAC3, H3K9, CyclinD1 and Bax proteins was tested by Western blotting. Gene expression for ${\beta}$-catenin, HDAC1and HDAC3 was tested by q-PCR. ${\beta}$-catenin and H3K9 proteins were also tested by immunofluorescence. Activity of Renilla luciferase (pTCF/LEF-luc) was assessed using the Luciferase Reporter Assay system reagent. The activity of total HDACs was detected with a HDACs colorimetric kit. Results: Exposure to TSA caused significant dose-and time-dependent inhibition of HepG2 cell proliferation (p<0.05) and resulted in increased cell percentages in G0/G1 and G2/M phases and decrease in the S phase. The apoptotic index in the control group was $6.22{\pm}0.25%$, which increased to $7.17{\pm}0.20%$ and $18.1{\pm}0.42%$ in the treatment group. Exposure to 250 and 500nmol/L TSA also caused cell morphology changes with numerous floating cells. Expression of ${\beta}$-catenin, H3K9and Bax proteins was significantly increased, expression levels of CyclinD1, HDAC1, HDAC3 were decreased. Expression of ${\beta}$-catenin at the genetic level was significantly increased, with no significant difference in HDAC1and HDAC3 genes. In the cytoplasm, expression of ${\beta}$-catenin fluorescence protein was not obvious changed and in the nucleus, small amounts of green fluorescence were observed. H3K9 fluorescence protein were increased. Expression levels of the transcription factor TCF werealso increased in HepG2 cells following induction by TSA, whikle the activity of total HDACs was decreased. Conclusions: TSA inhibits HDAC activity, promotes histone acetylation, and activates Wnt/${\beta}$-catenin signaling to inhibit proliferation of HepG2 cell, arrest cell cycling and induce apoptosis.

Effect of Samhwangsasim-tang and Daehwanghwangryunsasim-tang on Palmitate-induced Lipogenesis in HepG2 cells (Palmitic acid로 지방 축적을 유도한 HepG2 cell에 대한 삼황사심탕과 대황황련사심탕의 효과 연구)

  • Um, Eun sik;Kim, Young Chul
    • The Journal of Korean Medicine
    • /
    • v.37 no.1
    • /
    • pp.62-76
    • /
    • 2016
  • Objectives: The goal of this study was to investigate the anti-lipogenic effects of Samhwangsasim-tang(SHT), Daehwanghwangryunsasim-tang(DHT) aqueous extract on HepG2 cells with palmitate. Materials and Methods: HepG2 cells treated with palmitate were used in this study as hepatic steatosis model. Cells were treated with different concentrations of SHT, DHT aqueous extract for 24 hours. Cell viability and cytotoxicity were analyzed by MTT assay. Expressions of Bcl-2, Bax, Survivin, P21, TGF-${\beta}1$, LXR-${\alpha}$, ChREBP, ACC1, SCD1 mRNA were determined by Real-time PCR. Apoptosis of cells was detected by ELISA and FACS. Expression level of caspase-3 was studied by Western blot. Lipid accumulation was indicated by Oil Red O staining. Results: SHT, DHT aqueous extract had no cytotoxicity, but decreased palmitate-induced lipid accumulation in HepG2 cells. SHT aqueous extract suppressed fatty acid synthesis by inhibiting LXR-${\alpha}$, ChREBP, SCD1 activation and increasing TGF-${\beta}1$ expression level. DHT aqueous extract also suppressed fatty acid synthesis by decreasing ChREBP expression and increasing TGF-${\beta}1$ expression. Apoptosis of lipid accumulated cells was increased by enhanced activities of P21, caspase-3 and inhibited expressions of Bcl-2, Survivin. Conclusions: These results suggest that SHT and DHT have an anti-lipogenic effects on lipid accumulation of hepatic cell. Also SHT and DHT have an efficacy to increase apoptosis of adipocyte without cytotoxicity. Therefore, SHT and DHT might have potential clinical applications for treatment of hepatic steatosis.

Anticancer Effect of Combination with Paljinhangahm-dan and Adriamycin on HepG2 Human Malignant Hepatoma Cell Line (인간 간암세포주 HepG2에서 팔진항암단과 adriamycin의 병용처리에 의한 항종양 효과)

  • Baek Eun Ki;Moon Goo;Won Jin Hee;Kim Dong Ung;Baek Dong Gi;Yoon Jun Chul;Song Bong Gil;Lee Byung Ho;Park Sang Gu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.5
    • /
    • pp.1243-1250
    • /
    • 2003
  • This study was designed to elucidate the synergistic cytotoxic mechanisms of the co-treatment of adriamycin and Paljinhangahm-dan in human hepatoma malignant cancer cell line, HepG2. The combination of adriamycin and the ethanol extract of Paljinhangahm-dan synergistically augmented the cytotoxicity of Adriamycin and Paljinhangahm-dan in HepG2 cells. The cytotoxicity of two drugs was revealed as apoptosis characterized by DNA fragmentaton in agarose gel electrophoresis. The apoptotic cytotoxicity of adriamycin and Paljinhangahm-dan was accompanied by the cleavage of procaspase -3 protease and PARP. Of note, anti apoptotic Bcl2 protein was obviously decreased, but Fas was dramatically increased in HepG2 cells co-treated with Adriamycin and Paljinhangahm -dan. In addition, through 2-D gel electorphoresis, we observed that the expression levels of a lot of proteins were obviously changed by the status of drug treatments. This results suggest that the synergistic cytotoxicity of the co-treatment of adriamycin and Paljinhangahm-dan might be caused by the changes of the expression levels of a lot of proteins which play pivotal roles in cell survival or death.

Evaluation of Protective Effects of Houttuynia cordata on H2O2-Induced Oxidative DNA Damage Using an Alkaline Comet Assay in Human HepG2 Cells

  • Hah, Dae-Sik;Kim, Chung-Hui;Ryu, Jae-Doo;Kim, Eui-Kyung;Kim, Jong-Shu
    • Toxicological Research
    • /
    • v.23 no.1
    • /
    • pp.25-31
    • /
    • 2007
  • To evaluate the protective effect of Houttuynia cordata on hydrogen peroxide-induced oxidative DNA damage in HepG2 cell line, we used an alkaline single-cell gel electrophoresis (SCGE; comet assay). The DNA damage was analyzed by tail moment (TM) and tail length (TL), which used markers of DNA strand breaks in SCGE. The $100{\mu}g/ml$ of methanolic extract of Houttuynia cordata root showed significant protective effects (p < 0.01) against hydrogen peroxide-induced DNA damage in HepG2 cells and increased cell viability against hydrogen peroxide. The results of this study indicate that Houttuynia cordata root methanol extract acts as a potential antioxidant, and exhibits potential anticancer properties, which may provide a clue to find applications in new pharmaceuticals for oxidative stability.

The Effects of Growth Inhibition and Quinone Reductase Activity Stimulation of Celastrus Orbiculatus Fractions in Various Cancer Cells (노박덩굴 분획물의 암세포 증식 억제 효과 및 Quinone Reductase 활성 증가효과)

  • Ku, Mi-Jeong;Shin, Mi-Ok
    • Journal of Nutrition and Health
    • /
    • v.40 no.6
    • /
    • pp.493-499
    • /
    • 2007
  • Celastrus orbiculatus (CO) has been used as a traditional herb medicine to treat fever, chill, joint pain, edema, rheumatoid arthritis and bacterial infection in China and Korea. In this study, we investigated anticarcinogenic effects of Celastrus orbiculatus (CO). CO was extracted with methanol (COM), and then further fractionated into four different types: methanol (COMM), hexane (COMH), butanol (COMB) and aqueous (COMA) partition layers. We determined the cytotoxicity of these four partitions in four kind of cancer cell lines, such as HepG2, MCF-7, HT29 and B16F10 Cells by MTT assay. Among various partition layers of CO, the COMM showed the strongest cytotoxic effects on cancer cell lines we used. We also observed quinone reductase (QR) induced effects in all partition layers of CO on HepG2 cells. The QR induced effects of COMM on HepG2 cells at 80 ${\mu}$ g/mL concentration indicated 3.28 to a control value of 1.0. The COMM showed the highest induction activity of quinone reductase on HepG2 cells among the other partition layers. Although further studies are needed, the present work suggests that CO may be a chemopreventive agent for the treatment of human cells.

Hepato-protective Effects of Daucus carota L. Root Ethanol Extract through Activation of AMPK in HepG2 Cells (HepG2 세포에서 AMPK 활성화를 통한 호나복(胡蘿蔔) 에탄올 추출물의 간 세포 보호 효과)

  • Kim, Doyeon;Park, Sang Mi;Byun, Sung Hui;Park, Chung A;Cho, Il Je;Kim, Sang Chan
    • Herbal Formula Science
    • /
    • v.26 no.4
    • /
    • pp.329-340
    • /
    • 2018
  • Objectives : In Traditional Korean medicine, Daucus carota L. has been used for treating dyspepsia, diarrhea, dysentery and cough. Recent pharmacognosic evidence showed D. carota has anti-oxidant, anti-cancer, anti-fungal, and hypotensive effects. Present study investigated hepato-protective effect of D. carota ethanol extract (DCE) against oxidative stress in HepG2 cells. Methods : After HepG2 cells were pretreated with different concentrations of DCE, the cells were exposed to tert-butyl hydroperoxide (tBHP) for inducing oxidative stress. Cell viability, hydrogen peroxide production, glutathione concentration, and mitochondrial membrane potentials were measured to explore hepato-protective effect of DCE. Phosphorylation of AMP-activated protein kinase (AMPK) and effect of compound C on cell viability were determined to investigate the role of AMPK on DCE-mediated cytoprotection. Results : DCE significantly decreased the tBHP-mediated cytotoxicity in a concentration dependent manner and reduced the changes on apoptosis-related proteins by tBHP in HepG2 cells. In addition, DCE significantly prevented hydrogen peroxide production, glutathione depletion, and mitochondrial membrane impairment induced by tBHP. Treatment with DCE increased phosphorylation of AMPK, and the DCE-mediated cytoprotection was abolished by pretreatment with compound C. Conclusions : These results demonstrate that DCE can protect hepatocytes from oxidative stress through activation of AMPK.

Enhancement of Anticarcinogenic Effect by Combination of Sedum sarmentosum Bunge with Platycodon grandiflorum A. Extracts (도라지 추출물 첨가에 의한 돌나물의 항발암 상승효과)

  • 박윤자;김미향;배송자
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.1
    • /
    • pp.136-142
    • /
    • 2002
  • Anticarcinogen is one of the major strategies for cancer control. It is well established that dietary factors play an important role in modulating the development of certain types of human cancer. We investiagted the anticarcinogenic effects of Sedum sarmentosum Bunge (SS) with Platycodon grandiflorum A. extracts on HepG2, HeLa and MCF-7 cell lines. By the MTT assay, among the five partition layers of methanol extract of SS (SSM), the ethylether partition layer of SS (SSMEE) showed the strongest cytotoxic effects on all cell lines. We also investigated the synergistic effect of the combination of SS and PG extracts on growth inhibition of the HepG2, HeLa and MCF-7 cell lines compared to the effects of five partition layers of SSM. Combination of SS and PG extracts significantly increased cytotoxic effects on all cell lines. Therefore, we were able to conclude that ethylether partition layer, SSMEE might have potentially useful cytotoxic materials on all the human cancer cells which we used. And we could suggest that the combination of SS with PG enhanced the anticarcinogenic effect on HepG2, HeLa and MCF-7 cell lines. We also determined QR activity of partition layers of SSM, among them, SSMEE on HepG2 cells showed the highest QR activity, 3.21 as control value of 1.0.

The Effects of Rehmannia glutinosa on the Protein Expression Related to the Angiogenesis, Cell Survival and Inflammation (생지황(生地黃)이 혈관신생, 세포생존 및 염증관련 단백질발현에 미치는 영향)

  • Kim, Sung-Beom;Kim, Kyung-Jun
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.19 no.3 s.31
    • /
    • pp.22-33
    • /
    • 2006
  • Objective : Angiogenesis induced by hypoxia and inflammation are an essential process of solid tumors and psoriasis. We researched the HIF-1 ${\alpha}$ (hypoxia inducible factor 1 alpha), VEGF(Vascular Endothelial Growth Factor), survival related PI3K-Akt, and inflammation related COX-2 protein expressions to get the information of the mechanism and effects of Rehmannia glutinosa in HepG2 and HaCaT cell lines. Method : To investigate the roles of the Rehmannia glutinosa extract, we performed MTS assay and western blots using HaCaT cells and HepG2 cells. HaCaT cells and HepG2 cells were treated with $50{\mu}g/ml$ and $100{\mu}g/ml$ Rehmannia glutinosa extracts. After 4hrs, HaCaT cells were treated with IGF-II protein for 24hrs and HepG2 cells were treated with $CoCl_2$. Results : 1. We could ohserve that the reduction of the protein level of HIT-1 ${\alpha}$ induced by IGF-II in HaCaT cells. 2. We Could ohserve that the decreased PI3K-Akt and COX-2 expression level by Rehmannia glutinosa extracts treated in HaCaT cells independently ith ERK1/2. 3. We could observe that the reduction of the protein level of HIF-1 ${\alpha}$ induced by $CoCl_2$ in HepG2 cells. Conclusion : These results suggest that Rehmannia glutinosa extracts contributes to the anti-survival pathway and anti-inflammatory activities. Also, we could assume that Rehmannia glutinosa act as anti-inflanmmatory or anti-hypoxia agents via reduction of COX-2 and HIF-1 ${\alpha}$.

  • PDF