• Title/Summary/Keyword: Henry's constant

Search Result 26, Processing Time 0.019 seconds

A Smart Setup for Craniospinal Irradiation

  • Peterson, Jennifer L.;Vallow, Laura A.;Kim, Siyong;Casale, Henry E.;Tzou, Katherine S.
    • Progress in Medical Physics
    • /
    • v.24 no.4
    • /
    • pp.230-236
    • /
    • 2013
  • Our purpose is to present a novel technique for delivering craniospinal irradiation in the supine position using a perfect match, field-in-field (FIF) intrafractional feathering, and simple forward-optimization technique. To achieve this purpose, computed tomography simulation was performed with patients in the supine position. Half-beam, blocked, opposed, lateral, cranial fields with a collimator rotation were matched to the divergence of the superior border of an upper-spinal field. Fixed field parameters were used, and the isocenter of the upper-spinal field was placed at the same source-to-axis distance (SAD), 20 cm inferior to the cranial isocenter. For a lower-spinal field, the isocenter was placed 40 cm inferior to the cranial isocenter at a constant SAD. Both gantry and couch rotations for the lower-spinal field were used to achieve perfect divergence match with the inferior border of the upper-spinal field. A FIF technique was used to feather the craniospinal and spinal-spinal junction daily by varying the match line over 2 cm. The dose throughout the target volume was modulated using the FIF simple forward optimization technique to obtain homogenous coverage. Daily, image-guided therapy was used to assure and verify the setup. This supine-position, perfect match craniospinal irradiation technique with FIF intrafractional feathering and dose modulation provides a simple and safe way to deliver treatment while minimizing dose inhomogeneity.

Prediction of Surface Water Contamination with RDX Transported from Soil in a Neighboring Firing Range (포탄 사격장 토양의 RDX에 의한 인근 하천 오염 예측)

  • Park, Jungtae;Lee, Dong Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.832-840
    • /
    • 2019
  • Recently, pollution from gunpowder due to shell shootings at military drilling sites has raised various environmental concerns. The purpose of this study is to predict the contamination level of RDX in the soil area of the firing range zone near Anwol river watershed, the study site, and the intake area, Anwol river and Imjin river, as a function of time and space. In this study, a multimedia model was developed to predict the variation of RDX contamination by rainfall. The range of the medium was limited to soil, water, and sediment, and excluded the atmosphere, taking into account the physical and chemical properties of RDX with low vapor pressure and low Henry's constant. The pollutant levels of the waters of compartments, including the last section of the Imjin River affecting the water intake, was compared with the environmental standard for RDX.

Effect of Modified Atmosphere Packaging Gas Composition on Quality Preservation of Korean Rockfish Fillets (조피볼락 필렛의 변형기체포장에서 품질보존에 미치는 기체조성의 영향)

  • Eo Jin Park;Su Chan Kim;Duck Soon An
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.3
    • /
    • pp.145-151
    • /
    • 2023
  • In order to extend shelf life for rockfish fillets by modified atmosphere packaging (MAP), different package atmospheres were compared in the product quality preservation. Firstly, CO2 solubility was measured at 0, 5, 10, and 15℃ to be incorporated into the mathematical model to predict the volume and CO2 concentration of the package at expected storage temperature. The CO2 solubility given in Henry's constant decreased with temperature to be fitted with a linear equation. Then air packaging as control and four MAP conditions of 100 g fillets were prepared and stored for duration of 5 days at 10℃ to compare them in the quality preservation effect. Four MAP conditions employed were CO2(60):O2(30):N2(10), CO2(60):O2(0):N2(40), CO2(30):O2(30):N2(40) andCO2(30):O2(0):N2(70). MAP conditions with high CO2 concentration inhibited total aerobic bacteria, and the conditions containing O2 led to low TVB-N. MAP of CO2(60):O2(30):N2(10) was found to be the best condition for rockfish fillet preservation considering total aerobic bacteria growth and nitrogenous volatiles production.

Feasible monitoring of the inhibitory effects of free NH3 on NO2- oxidation

  • Yoo, Byeong-Hak;Lee, Sang-hun
    • Geosystem Engineering
    • /
    • v.21 no.5
    • /
    • pp.243-250
    • /
    • 2018
  • This study investigated nitrite ($NO_2{^-}$) accumulation due to FA (Free Ammonia: $NH_3$) inhibition in an anaerobic-aerobic-anoxic (AOA) process reactor to mainly treat wastewater containing 302-610 mg/L of $NH_3/NH_4{^+}-N$. Based on an experimental operation focusing on the nitrification, it was observed that $NO_2{^-}$ was accumulated in the aerobic nitrification zone as pH increased, due to inhibition of $NO_2{^-}$ conversion to $NO_3{^-}$ by FA. This result implied FA inhibition to NOB ($NO_2{^-}$-Oxidizing Bacteria) for converting $NO_2{^-}$ to $NO_3{^-}$. The objective of this study is to develop a feasible monitoring procedure for early detection of the FA inhibition toward $NO_2{^-}$ accumulation and poor nitrification. Thus, in order to rapidly assess FA concentrations, an $NH_3$ probe was utilized to measure $NH_3$ concentrations together with applying a simple model prediction using the measured $NH_4{^+}$ concentrations, the Henry's law constant of $NH_3$ and measured pH. The predictive model $NH_3$ levels were verified by a good correlation (89%) with the corresponding measured data, but the model prediction underestimated FA concentrations at less than 7.4 and a little overestimated at pH above 7.5. Interestingly, accumulated $NO_2{^-}$ levels were roughly correlated with FA levels that were observed at delayed time points. This reflects the detected FA levels can be good indicators of $NO_2{^-}$ levels with some delayed time. $NO_2{^-}$ accumulation started at measured FA concentrations of higher than approximately 3 mg/L and ceased below that FA level.

Initial Risk Assessment of Benzoyl peroxide in Environment (Benzoyl peroxide의 환경에서의 초기 위해성 평가)

  • Kim Mi Kyoung;Bae Heekyung;Kim Su-Hyon;Song Sanghwan;Koo Hyunju;Park Kwangsik;Lee Moon-Soon;Jeon Sung-Hwan;Na Jin-Gyun
    • Environmental Analysis Health and Toxicology
    • /
    • v.19 no.1
    • /
    • pp.33-40
    • /
    • 2004
  • Benzoyl peroxide is a High Production Volume Chemical, which is produced about 1,371 tons/year in Korea as of 2001 survey. The substance is mainly used as initiators in polymerization, catalysts in the plastics industry, bleaching agents for flour and medication for acne vulgaris. In this study, Quantitative Structure-Activity Relationships (QSAR) are used for getting adequate information on the physical -chemical properties of this chemical. And hydrolysis in water, acute toxicity to aquatic and terrestrial organisms for benzoyl peroxide were studied. The physical -chemical properties of benzoyl peroxide were estimated as followed; vapor pressure=0.00929 Pa, Log $K_{ow}$ = 3.43, Henry's Law constant=3.54${\times}$10$^{-6}$ atm-㎥/mole at $25^{\circ}C$, the half-life of photodegradation=3 days and bioconcentration factor (BCF)=92. Hydrolysis half-life of benzoyl peroxide in water was 5.2 hr at pH 7 at $25^{\circ}C$ and according to the structure of this substance hydrolysis product was expected to benzoic acid. Benzoyl peroxide has toxic effects on the aquatic organisms. 72 hr-Er $C_{50}$ (growth rate) for algae was 0.44 mg/1.,48 hr-E $C_{50}$ for daphnia was 0.07mg/L and the 96hr-L $C_{50}$ of acute toxicity to fish was 0.24mg/L. Acute toxicity to terrestrial organisms (earth worm) of benzoyl peroxide was low (14 day-L $C_{50}$ = > 1,000 mg/kg). Although benzoyl peroxide is high toxic to aquatic organisms, the substance if not bioaccumulated because of the rapid removal by hydrolysis (half-life=5.2 hr at pH 7 at $25^{\circ}C$) and biodegradation (83% by BOD after 21 days). The toxicity observed is assumed to be due to benzoyl peroxide rather than benzoic acid, which shows much lower toxicity to aquatic organisms. One can assume that effects occur before hydrolysis takes place. From the acute toxicity value of algae, daphnia and fish, an assessment factor of 100 was used to determine the predicted no effect concentration (PNEC). The PNEC was calculated to be 0.7$\mu\textrm{g}$/L based on the 48 hr-E $C_{50}$ daphnia (0.07 mg/L). The substance shows high acute toxicity to aquatic organisms and some information indicates wide-dispersive ore of this substance. So this substance is, a candidate for further work, even if it hydrolysis rapidly and has a low bioaccumulation potential. This could lead to local concern for the aquatic environment and therefore environmental exposure assessment is recommended.

Analysis of Amine Absorbents Volatility Based on the Chemical Structure (아민 흡수제의 화학구조에 따른 휘발 특성)

  • Lee, Kyung Ja;Lee, Ji Hyun;Kwak, No Sang;Lee, In Young;Kim, Jun Han;Eom, Yong Seok;Jang, Kyung Ryoung;Shim, Jae Goo;Lee, Yongtaek
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.348-352
    • /
    • 2012
  • Amine volatility occurring on the $CO_2$ capture process may result in significant economic losses and environmental impact. In this study, using an volatility measurement apparatus, we measured a amine volatility of various amines including MEA(Monoethanolamine), MDEA(N-Methyldiethanolamine), Pz(Piperazine), AMP(2-Amino-2-methyl-1-propanol), 2-MP(2-Methylpiperazine), DGA(Diglycolamine). For the quantitative analysis of volatility, we analyzed the effects of temperature and $CO_2$ loading using an gas chromatography analysis. The result shows that the amine volatility was increased by increasing Henry's constant(MDEA$-CH_3$)(for AMP).