• Title/Summary/Keyword: Hemoproteins

Search Result 11, Processing Time 0.023 seconds

Identification and Partial Purification of Ethanol-Induced Hemoproteins in Human Liver (사람의 간에서 Ethanol에 의해 유발되는 hemoprotein들의 확인 및 부분정제)

  • Park, Sung-Woo;Seo, Bae-Seok;Jin, Kwang-Ho
    • Analytical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.117-124
    • /
    • 1995
  • To Purify hemoproteins showing from 218nm absorbance, crude liver extract of human with hepatocirrhosis was treated with Triton N-101. Hemoproteins were purified by modification of Mohamed's method. This crude extract was applied to Octyl-Sepharose CL-4B column and the step elution was performed with 0.06% Lubrol PX and 0.25% Lubrol PX. The absorption of effluents were examined at 418nm and two peaks were appeared(Fig. 2). Hemoproteins were purified from Hyydroxyapatite and DEAE-Sephadex A-25 columns which the first peak was applied to(Fig. 3, 4). In death with suddenly, purified hemoproteins with 62 and 45kDa were obtained from 12.5% SDS-PAGE. In death with hepatocirrhosis, purified hemoprotein with 54kDa was obtainded from 12.5% SDS-PAGE(Fig. 5). Cytochrome P450 was purified to a specific content of 20.8nmol/mg protein with a recovery of about 4.1%. Absorbance maximum of these hemoproteins were 446nm at UV spectruum(Fig. 6).

  • PDF

경유의 Model solution에서 고정화효소를 이용한 Dibezothiophene의 산화

  • Heo, Jeong-Chan;Seong, Hyeon-Tae;Ryu, Geun-Gap
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.517-520
    • /
    • 2001
  • Fossil fuels such as coal and crude oil contain various organic sulfur compounds. Combustion of these fuels emit sulfur oxides which are considered as msjor air pollutants causing acid rain problem. Among various organic sulfur compounds, aromatic sulfur compounds of thiophenes which constitute major sulfur fractions of heavy oils are not easily removed by hydrodesulfurization. Many peroxidase and hemoproteins are known to oxidize dibenzothiophene (DBT) to dibenzothiophene-sulfoxide(DBT - sulfoxide) then dibenzothiophene- sulfone (DBT-sulfone). The oxidation of DBT by the immobilized hemoproteins in n-octane was increased significantly when the hemoproteins were deposited on celites of the particle size between 0.75 - 1.0 mm and a conventional substrates. such as t-butyl hydroperoxide and cumene hydroperoxide. In anhydrous organic solvents with log P values larger than 4.0 DBT was completely oxidized by cumene hydroperoxide catalyzed by cytochrome c deposited on celites.

  • PDF

Lightening up Light Therapy: Activation of Retrograde Signaling Pathway by Photobiomodulation

  • Kim, Hong Pyo
    • Biomolecules & Therapeutics
    • /
    • v.22 no.6
    • /
    • pp.491-496
    • /
    • 2014
  • Photobiomodulation utilizes monochromatic (or quasimonochromatic) light in the electromagnetic region of 600~1000 nm for the treatment of soft tissues in a nondestructive and nonthermal mode. It is conceivable that photobiomodulation is based upon the ability of the light to alter cell metabolism as it is absorbed by general hemoproteins and cytochrome c oxidase (COX) in particular. Recently it has been suggested radiation of visible and infrared (IR) activates retrograde signaling pathway from mitochondria to nucleus. In this review, the role of COX in the photobiomodulation will be discussed. Further a possible role of water as a photoreceptor will be suggested.

$^1H$ NMR Study of mono-and di-cyanide ligated Hemin Complexes as Models of Hemoproteins (Heme 단백질의 Model로서의 Hemin 착물에 관한 $^1H$ NMR 연구)

  • Lee, Kang-Bong;Kim, Nam Jun;Kweon, Jeehye;Rhee, Jae-Seong;Choi, Young-Sang
    • Analytical Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.505-515
    • /
    • 1994
  • $^1H$ NMR spectra for monocyanide ligated ferriprotoporphyrin(hemin) complex and dicyanide coordinated hemin complex in dimethylsulfoxide(DMSO-$d_6$) solution have been recorded and analyzed. NMR spectra of hemin-cyanide complexation in DMSO-$d_6$ exhibit that the cyanide ligation to hemin is temperature-dependent. Thermodynamic parameters for the monocyanide ligated hemin to dicyanide ligated hemin are consistent with endothermic process with ${\Delta}H^{\circ}=736.6cal/mol$ and ${\Delta}S^{\circ}=16.4eu$. Detailed analysis of the anomalous deviation from Curie behavior for CN/DMSO coordinated hemin complex demonstrates the presence of a high spin character, and this weaker axial field relative to the purely low-spin dicyanide hemin complex is supposed to attribute to instantaneously ruptured iron-DMSO bond. This complex may serve as a useful model to characterize electronic/molecular structure of hemoproteins, which one of axial ligands is weak.

  • PDF

Overexpression of Shinorhizobium meliloti Hemoprotein in Streptomyces lividans to Enhance Secondary Metabolite Production

  • Kim, Yoon-Jung;Sa, Soon-Ok;Chang, Yong-Keun;Hong, Soon-Kwang;Hong, Young-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.12
    • /
    • pp.2066-2070
    • /
    • 2007
  • It was found that Shinorhizobium meliloti hemoprotein (SM) was more effective than Vitreoscilla hemoglobin (Vhb) in promoting secondary metabolites production when overexpressed in Streptomyces lividans TK24. The transformant with sm (sm-transformant) produced 2.7-times and 3-times larger amounts of actinorhodin than the vhb-transformant in solid culture and flask culture, respectively. In both solid and flask cultures, a larger amount of undecylprodigiocin was produced by the sm-transformant. It is considered that the overexpression of SM especially has activated the pentose phosphate pathway through oxidative stress, as evidenced by an increased NADPH production observed, and that it has promoted secondary metabolites biosynthesis.

Oxidation of Dibenzothiophene Catalyzed by Surfactant-Hemoprotein Complexes in Anhydrous Nonpolar Organic Solvents

  • Ryu, Keun-Garp;Chae, Young-Rae;Kwon, O-Yul
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.5
    • /
    • pp.647-650
    • /
    • 2003
  • In anhydrous organic solvents, the complexes formed between AOT (dodecylbenzene sulfuric acid sodium salt) and hemoproteins, such as hemoglobin, myoglobin, or cytochrome c, displayed remarkably higher activity than the hemoprotein powders to oxidize dibenzothiophene, a model compound of organic sulfurs contained in fossil fuels. In slightly hydrophobic organic solvents, such as ethyl acetate and butyl acetate, dibenzothiophene was completely oxidized catalytically by the cytochrome c-AOT complex with cumene hydroperoxide (${\alpha},{\alpha}-dimethylbenzyl$ hydroperoxide) as an oxidant. In highly hydrophobic organic solvents, such as decane and hexadecane, however, the activity of the cytochrome c-AOT complex decreased, presumably due to the aggregation of the hemoprotein-AOT complex in these solvents.

Bacillus subtilis HmoB is a heme oxygenase with a novel structure

  • Park, Seong-Hun;Choi, Sa-Rah;Choe, Jung-Woo
    • BMB Reports
    • /
    • v.45 no.4
    • /
    • pp.239-241
    • /
    • 2012
  • Iron availability is limited in the environment and most bacteria have developed a system to acquire iron from host hemoproteins. Heme oxygenase plays an important role by degrading heme group and releasing the essential nutrient iron. The structure of Bacillus subtilis HmoB was determined to 2.0 ${\AA}$ resolution. B. subtilis HmoB contains a typical antibiotic biosynthesis monooxygenase (ABM) domain that spans from 71 to 146 residues and belongs to the IsdG family heme oxygenases. Comparison of HmoB and IsdG family proteins showed that the C-terminal region of HmoB has similar sequence and structure to IsdG family proteins and contains conserved critical residues for heme degradation. However, HmoB is distinct from other IsdG family proteins in that HmoB is about 60 amino acids longer in the N-terminus and does not form a dimer whereas previously studied IsdG family heme oxygenases form functional homodimers. Interestingly, the structure of monomeric HmoB resembles the dimeric structure of IsdG family proteins. Hence, B. subtilis HmoB is a heme oxygenase with a novel structural feature.

Effect of Heavy Metals on the Secretion of Amylase in Rat Pancreatic Fragments (중금속류가 취절편의 Amylase 분비에 미치는 영향)

  • Kim, Hea-Young;Kim, Won-Joon
    • The Korean Journal of Pharmacology
    • /
    • v.17 no.2
    • /
    • pp.31-36
    • /
    • 1981
  • Heavy metals which are present as trace elements in human body have been known to modify various enzymatic reaction. These metals can be essential or non-essential. Zinc, copper and calcium are essential in maintaining some biological processes, whereas non-essential metals such as cadmium, lead and mercury produce accumulatve toxic effect. Cadmium accumulated in pancreas can cause toxicity and damage of pancreatic cells, thereby influencing CHO metabolism. Lead compounds are known to produce toxic effects on the kidney, digestive system and brain fellowed by inhibition of activity of ${\rho}-aminolevulinic$ acid and biosynthesis of hemoproteins and cytochrome. Evidence has been accumulated that zinc not only acts as a cofactor in enzyme reaction but also prevents toxic effect induced by heavy metal such as copper and cadmium. To demonstrate the effect of heavy metals on pancreatic secretion, part of uncinate pancreas was taken and incubated in Krebs-Ringer bicarbonate buffer with heavy metals used. Additional treatment with CCK-OP was performed when needed. After incubation during different period of time, medium was analyzed for amylase activity using Bernfeld's method. The present study was attempted in order to elucidate the effect of several kinds of heavy metal on exocrine pancreatic secretion in vitro. The results obtained are as follows: 1) CCK-OP stimulated significantly amylase release from pancreatic fragments in vitro. 2) CCK-OP response of amylase release from pancreatic fragments was inhibited by treatmant with cadmium, especially high doses of cadmium. 3) CCK-OP response of amylase release from pancreatic fragments was inhibited when pretreated with $10^{-4}M$ copper chloride. 4) Lead chloride at the concentration of $10^{-3}M\;and\;10^{4}M$ stimulated the basal amylase release in vitro but CCK-OP response did not augment by lead chloride. 5) Zine chloride did not affect amylase release from pancreatic fragment in vitro. From the results mentioned above, it is suggested that CCK-OP response was inhibited it the amylase release from pancreatic fragments pretreated with cadmium and copper chloride.

  • PDF

Characterization of Lipid Prooxidants in Sardine Skin (정어리표피중에 존재하는 지방산화촉진물질의 검색확인 및 그 특성구명)

  • CHO Soon-Yeong;MOHRI Satoshi;ENDO Yasushi;FUJIMOTO Kenshiro
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.25 no.6
    • /
    • pp.501-510
    • /
    • 1992
  • Lipid prooxidants in sardine skin was characterized. Prooxidants in the sardine skin extract with 0.05M phosphate buffer was purified by successive chromatography on Sephadex G-200, DEAE-Sephadex A-50 and CM-Sephadex A-50. Prooxidants of sardine skin exist mainly in the intermediate molecular weight fractions. Observations of the thermounstability and optimum pH(pH 7.0) suggest that the major prooxidants are enzymes and hemoproteins. They can oxidize well both free and esterified linoleic acid and form conjugated hydroperoxides. From these results, the major prooxidants in sardine skin are assumed to be lipoxygenase-like enzymes.

  • PDF

Improvement of Cyclosporin A Hydroxylation in Sebekia benihana by Conjugational Transfer of Streptomyces coelicolor SCO4967, a Secondary Metabolite Regulatory Gene (Sebekia benihana에서 Streptomyces coelicolor SCO4967 유전자 도입을 통한 하이드록실 사이클로스포린 A의 생전환)

  • Kim, Hyun-Bum;Lee, Mi-Jin;Han, Kyu-Boem;Kim, Eung-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.4
    • /
    • pp.475-480
    • /
    • 2010
  • Actinomycetes are Gram-positive soil bacteria and one of the most important industrial microorganisms due to superior biosynthetic capabilities of many valuable secondary metabolites as well as production of various valuable bioconversion enzymes. Among them are cytochrome P450 hydroxylase (CYP), which are hemoproteins encoded by a super family of genes, are universally distributed in most of the organisms from all biological kingdoms. Actinomycetes are a rich source of soluble CYP enzymes, which play critical roles in the bioactivation and detoxification of a wide variety of metabolite biosynthesis and xenobiotic transformation. Cyclosporin A (CyA), one of the most commonly-prescribed immunosuppressive drugs, was previously reported to be hydroxylated at the position of 4th N-methyl leucine by a rare actinomycetes called Sebekia benihana, leading to display different biological activity spectrum such as loss of immunosuppressive activities yet retaining hair growth-stimulating side effect. In order to improve this regio-selective CyA hydroxylation in S. benihana, previously-identified several secondary metabolite up-regulatory genes from Streptomyces coelicolor and S. avermitilis were heterologously overexpressed in S. benihana using an $ermE^*$ promoter-containing Streptomyces integrative expression vector. Among tested, SCO4967 encoding a conserved hypothetical protein significantly stimulated region-specific CyA hydroxylation in S. benihana, implying that some common regulatory systems functioning in both biosynthesis and bioconversion of secondary metabolite might be present in different actinomycetes species.