• Title/Summary/Keyword: Hemoglobin

Search Result 2,136, Processing Time 0.035 seconds

Chemical Modification of Sheep Hemoglobin with Methoxy-Polyethylene Glycol

  • Jeong, Seong-Tae;Byun, Si-Myung
    • BMB Reports
    • /
    • v.29 no.3
    • /
    • pp.261-265
    • /
    • 1996
  • Sheep hemoglobin (SHb) was modified with methoxy-polyethylene glycol (mPEG) to develop a potential blood substitute. mPEG has been used to decrease antigenicity and immunogenicity of foreign proteins. When the mPEG was attached to SHb, the modified hemoglobins showed decreased electrophoretic mobility on SDS-PAGE and decreased free amino groups. When the remaining free amino groups of mPEG modified SHb were determined by TNBS free amino group titration methods. about 34% of total free amino groups were modified with mPEG. This mPEG-SHb conjugate of 34% amino groups modified showed no precipitation by double immunodiffusion with polyclonal antibodies against SHb. This modified hemoglobin still has oxygen transport activity. So this antigenicity decreased hemoglobin may be used in humans as a potential blood substitute.

  • PDF

Inhibition of Human Hemoglobin Autoxidaiton by Sodium n-Dodecyl Sulphate

  • Reza, Dayer Mohammad;Ali Akbar, Moosavi-Movahedi;Parviz, Norouzi;Ghourchian, Ghourchian;Hedayat-Olah, Hedayat-Olah;Shahrokh, Safarian
    • BMB Reports
    • /
    • v.35 no.4
    • /
    • pp.364-370
    • /
    • 2002
  • The effect of sodium n-dodecyl sulphate (SDS) on hemoglobin autoxidation was studied in the presence of a 100mM phosphate buffer (pH 7.0) by different methods. These included spectorphotometry, fluorescence technique, cyclic voltametry, differential scanning calorimetry, and densitometry. Spectroscopic studies showed that SDS concentrations up to 1 mM increased deoxy-, decreases oxy-, and had no significant effect on the met- conformation of hemoglobin. Therefore, a SDS concentration up to 1 mM increased the deoxy form of hemoglobin as the folded, compact state and decreases the oxy conformation. The turbidity measurements and differential scanning calorimetry techniques indicated a more stable conformation for hemoglobin in the presence of SDS up to 1mM. Electrochemical studies also confirmed a more difficult oxidation under these conditions. The induction of the deoxy form in the presence of SDS was confirmed by densitometry techniques. The compact structure of deoxyhemoglobin blocks the formation of met-conformation in low SDS concentrations.

The Removal of Mixed Soil of Protein and Fat by Protease (프로테아제를 응용한 단백질과 지질 혼합오구의 제거)

  • Seong, Hye Yeong;Lee, Jeong Suk
    • Textile Coloration and Finishing
    • /
    • v.13 no.2
    • /
    • pp.18-18
    • /
    • 2001
  • This study has examined the removal of mixed soil of protein and fat by protease. Cotton and PET fabrics were soiled by spotting of hemoglobin and triolein, respectively. The soiling order and soil concentration were changed in this procedure. The soiled fabrics were aged at 130℃ for 20 minutes. Protease was added in the alcohol ethoxylate(AE) detergent solution. The removal effciency was evaluated by analysis of protein and/or fat on the fabrics before and after washing, respectively. The detergency of PET fabrics was higher than that of cotton fabrics. The removal efficiency of hemoglobin was improved by protease from cotton and PET fabrics. Especially the removal efficiency of hemoglobin was remarkably improved from cotton fabrics. With the increase of hemoglobin and triolein (1:1) mixed soil, the removal of mixed soil was increased in proportion to mixed soil content up to a certain point. but it began to decrease above the point from cotton fabrics, while it was generally increased from PET fabrics. The detergency of total mixed soil from cotton fabrics was higher in case of soiling order with triolein after hemoglobin than in case of soiling order with triolein before hemoglobin. But the soiling order was not greatly effected in the detergency of total mixed soil from PET fabrics.

The Removal of Mixed Soil of Protein and Fat by Protease (프로테아제를 응용한 단백질과 지질 혼합오구의 제거)

  • 성혜영;이정숙
    • Textile Coloration and Finishing
    • /
    • v.13 no.2
    • /
    • pp.104-113
    • /
    • 2001
  • This study has examined the removal of mixed soil of protein and fat by protease. Cotton and PET fabrics were soiled by spotting of hemoglobin and triolein, respectively. The soiling order and soil concentration were changed in this procedure. The soiled fabrics were aged at $130^\circ{C}$ for 20 minutes. Protease was added in the alcohol ethoxylate(AE) detergent solution. The removal effciency was evaluated by analysis of protein and/or fat on the fabrics before and after washing, respectively. The detergency of PET fabrics was higher than that of cotton fabrics. The removal efficiency of hemoglobin was improved by protease from cotton and PET fabrics. Especially the removal efficiency of hemoglobin was remarkably improved from cotton fabrics. With the increase of hemoglobin and triolein (1:1) mixed soil, the removal of mixed soil was increased in proportion to mixed soil content up to a certain point. but it began to decrease above the point from cotton fabrics, while it was generally increased from PET fabrics. The detergency of total mixed soil from cotton fabrics was higher in case of soiling order with triolein after hemoglobin than in case of soiling order with triolein before hemoglobin. But the soiling order was not greatly effected in the detergency of total mixed soil from PET fabrics.

  • PDF

Factors Associated with Hemoglobin A1c among Patient Aged 40 years over with Diabetes Mellitus: 2012 Korea Health and Nutrition Examination Survey (40대 이상 당뇨환자의 당화혈색소 조절 상태에 영향을 미치는 요인: 2012 국민건강영양조사결과를 바탕으로)

  • Ji, Eun Joo
    • Journal of Korean Academy of Fundamentals of Nursing
    • /
    • v.22 no.4
    • /
    • pp.433-441
    • /
    • 2015
  • Purposes: This study was done to identify factors associated with uncontrolled hemoglobin A1c among patient with diabetes mellitus. Method: The sample was 412 Koreans with diagnosed diabetes aged 40 years or older who participated in the Fifth Korea Health and Nutrition Examination survey, which was a nationwide, cross-sectional survey. Data was analyzed using logistic regression. Uncontrolled hemoglobin A1c rate was 55%. Results: There was a difference between controlled and uncontrolled group in hemoglobin A1c as follows: duration of diabetes, BMI(Body Mass Index), hypertriglyceridemia, vitamin D, sleep duration. After adjusting for confounding factor, longer duration of diabetes (>7 years vs. ${\leq}7$)(Adjusted OR=2.277, 95% CI [1.277-4.060]), presence of hypertriglyceridemia (Adjusted OR=4.019, 95% CI [1.871-8.634]), lower vitamin D level (<20ng/mL vs. ${\geq}20$)(Adjusted OR=2.487, 95% CI[1.411-4.381]), longer sleep duration (6-8 hours vs >8 hours)(Adjusted OR=6.831, 95% CI [1.877-24.855]) were significantly associated with increased odds of uncontrolled hemoglobin A1c. Conclusions: Results show that duration of diabetes, hypertriglyceridemia, vitamin D and sleep duration are significantly related to hemoglobin A1c. Therefore, considering these factors it would be helpful to develop strategies to improve blood glucose control in patients with diabetes.

Enhanced Biodegradation of Total Petroleum Hydrocarbons (TPHs) in Contaminated Soil using Biocatalyst

  • Owen, Jeffrey S.;Pyo, Sunyeon;Kang, Guyoung
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.5
    • /
    • pp.47-51
    • /
    • 2015
  • Biocatalytic degradation of total petroleum hydrocarbons (TPHs) in contaminated soil by hemoglobin and hydrogen peroxide is an effective soil remediation method. This study used a laboratory soil reactor experiment to evaluate the effectiveness of a nonspecific biocatalytic reaction with hemoglobin and H2O2 for treating TPH-contaminated soil. We also quantified changes in the soil microbial community using real-time PCR analysis during the experimental treatment. The results show that the measured rate constant for the reaction with added hemoglobin was 0.051/day, about 3.5 times higher than the constant for the reaction with only H2O2 (0.014/day). After four weeks of treatment, 76% of the initial soil TPH concentration was removed with hemoglobin and hydrogen peroxide treatment. The removal of initial soil TPH concentration was 26% when only hydrogen peroxide was used. The soil microbial community, based on 16S rRNA gene copy number, was higher (7.1 × 106 copy number/g of bacteria, and 7.4 × 105 copy number/g of Archaea, respectively) in the hemoglobin catalyzed treatment. Our results show that TPH treatment in contaminated soil using hemoglobin catalyzed oxidation led to the enhanced removal effectiveness and was non-toxic to the native soil microbial community in the initial soil.

A post-genome-wide association study validating the association of the glycophorin C gene with serum hemoglobin level in pig

  • Liu, Yang;Hu, Zhengzheng;Yang, Chen;Wang, Shiwei;Wang, Wenwen;Zhang, Qin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.5
    • /
    • pp.638-642
    • /
    • 2017
  • Objective: This study aimed to validate the statistical evidence from the genome-wide association study (GWAS) as true-positive and to better understand the effects of the glycophorin C (GYPC) gene on serum hemoglobin traits. Methods: Our initial GWAS revealed the presence of two single nucleotide polymorphisms (SNPs) (ASGA0069038 and ALGA0084612) for the hemoglobin concentration trait (HGB) in the 2.48 Mb region of SSC15. From this target region, GYPC was selected as a promising gene that associated with serum HGB traits in pigs. SNPs within the GYPC gene were detected by sequencing. Thereafter, we performed association analysis of the variant with the serum hemoglobin level in three pig populations. Results: We identified one SNP (g.29625094 T>C) in exon 3 of the GYPC gene. Statistical analysis showed a significant association of the SNP with the serum hemoglobin level on day 20 (p<0.05). By quantitative real-time polymerase chain reaction, the GYPC gene was expressed in eight different tissues. Conclusion: These results might improve our understanding of GYPC function and provide evidence for its association with serum hemoglobin traits in the pig. These results also indicate that the GYPC gene might serve as a useful marker in pig breeding programs.

Association between Chronic Obstructive Pulmonary Disease and Hemoglobin Concentration in the Elderly: Based on National Health and Nutrition Survey (국민건강영양조사 자료를 이용한 노인의 만성폐쇄성폐질환과 헤모글로빈 농도의 상관관계)

  • Cho, Hyoung Jun;Huh, Yool-Gang;Kim, Dae hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.157-163
    • /
    • 2019
  • This study determines the difference in prevalence of anemia and hemoglobin concentration between chronic obstructive pulmonary disease (COPD) and control groups in the elderly. Moreover, this study also examines the prevalence of anemia and hemoglobin concentration according to the severity of COPD in the elderly. Medical records of 8150 participants who answered the 7th National Health and Nutritional Survey conducted in 2016 were reviewed, and a total of 694 participants was included in the analysis. Participants were classified into two groups: COPD and control groups. Laboratory studies on hemoglobin, hematocrit, red blood cell concentration and prevalence of anemia were collected. Subgroup analysis was also conducted according to the severity of COPD. No significant differences were determined for the prevalence of anemia and hemoglobin concentration between both groups. Hemoglobin concentration was significantly higher in the COPD group. Although not statistically significant, there was a tendency for decrease in the prevalence of anemia and increase in the hemoglobin concentration as the severity of COPD increased. Our findings present specific data about the prevalence of anemia and hemoglobin concentration in elderly patients with COPD. Hence, we propose that occurrence of anemia in elderly patients with COPD requires further evaluation of the causes.

Skin Pigment Recognition using Projective Hemoglobin- Melanin Coordinate Measurements

  • Yang, Liu;Lee, Suk-Hwan;Kwon, Seong-Geun;Song, Ha-Joo;Kwon, Ki-Ryong
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1825-1838
    • /
    • 2016
  • The detection of skin pigment is crucial in the diagnosis of skin diseases and in the evaluation of medical cosmetics and hairdressing. Accuracy in the detection is a basis for the prompt cure of skin diseases. This study presents a method to recognize and measure human skin pigment using Hemoglobin-Melanin (HM) coordinate. The proposed method extracts the skin area through a Gaussian skin-color model estimated from statistical analysis and decomposes the skin area into two pigments of hemoglobin and melanin using an Independent Component Analysis (ICA) algorithm. Then, we divide the two-dimensional (2D) HM coordinate into rectangular bins and compute the location histograms of hemoglobin and melanin for all the bins. We label the skin pigment of hemoglobin, melanin, and normal skin on all bins according to the Bayesian classifier. These bin-based HM projective histograms can quantify the skin pigment and compute the standard deviation on the total quantification of skin pigments surrounding normal skin. We tested our scheme using images taken under different illumination conditions. Several cosmetic coverings were used to test the performance of the proposed method. The experimental results show that the proposed method can detect skin pigments with more accuracy and evaluate cosmetic covering effects more effectively than conventional methods.