• Title/Summary/Keyword: Heme binding domain

Search Result 15, Processing Time 0.02 seconds

Genetic Variation of Cytochrome P450 Genes in Garlic Cultivars (마늘유래 Cytochrome P450 유전자의 변이 분석)

  • Kwon, Soon-Tae;Kamiya, Juli
    • Korean Journal of Plant Resources
    • /
    • v.24 no.5
    • /
    • pp.584-590
    • /
    • 2011
  • Wound inducible P450-Esg cDNA, one of cytochrome P450 gene family, was isolated from shoot of Euiseong garlic cultivar. P450-Esg cDNA possesses highly conserved heme-binding domain in the nucleotide sequence, and 1,419 bp of open reading frame (ORF) coding of 473 amino acids. Based on the nucleotide sequence analysis of P450-Esg homologous from twelve garlic cultivars, two domains, one domain between 472 to 510 bp, and the other between 1,210 to 1,249 bp from start codon (ATG), showed various nucleotide polymorphism among cultivars. Sequence of heme-binding domain in P450-Esg homologous, which is located at the domain between 1,210 to 1,240 bp from start codon, showed various nucleotide polymorphism as well as amino acid sequence polymorphism among twelve garlic cultivars. Anther domain, between 472 to 510 bp from start codon, showed exactly same amino acid sequence in the twelve garlic cultivars, but there were various single nucleotide polymorphism to the cultivars.

Nucleotide Polymorphisms of Cytochrome P450 Genes in Domestic Garlic Cultivars (국내 재배마늘의 Cytochrome P450 유전자의 염기다형성 분포)

  • Kwon, Soon-Tae;Chung, Jinbo
    • Korean Journal of Plant Resources
    • /
    • v.31 no.5
    • /
    • pp.531-537
    • /
    • 2018
  • This study was carried to survey distribution of the nucleotide polymorphisms in heme-binding (HB) domain, which is highly conserved region between 1,210 and 1,240 bp of cytochrome P450, in domestic garlic cultivars. 120 garlic cultivars collected from Korea were classified into seven HB domain variation based on the nucleotide sequence of the domain. Northern type garlic cultivars, collected from Kyungpook, Chungnam, Chungpook and Kangwon province, showed 51.3% of KP2 type nucleotide sequence, 5'-TTT/GGC/GGT/GGA/CGG/AGA/ATA/TGT/CCT/GGA-3' with coding amino acid FGGGRRICPG, 13.7% of KP1, 11.3% of CP, 8.8% of CM and 5% of KW2 types. Southern type cultivars, collected from Kyungnam province, showed 52.5% of KM type nucleotide sequence, 5'-TTT/GGC/GCA/GGA/CGG/AGA/ATT/TGT/CCT/GGA-3' with coding amino acid FGAGRRICPG, 22.5% of KP2, 5.0% of KW2 and 2,5% of CP type nucleotide sequence. These results showed that Korean garlics were cultivated in highly mixed condition even in the same region.

Cloning of Cytochrome P450 Gene involved in the Pathway of Capsidiol Biosynthesis in Red Pepper Cells (고추세포에서 Capsidiol 생합성을 유도하는 Cytochrome P450 유전자의 탐색)

  • Kwon, Soon-Tae;Kim, Jae-Sung;Jung, Do-Cheul;Jeong, Jeong-Hag;Hwang, Jae-Moon;Oh, Sei-Myoung
    • Journal of Life Science
    • /
    • v.13 no.6
    • /
    • pp.879-888
    • /
    • 2003
  • In order to measure the enzyme activity of 5-epi-aristolochene hydroxylase, one of cytochrome P450 (P450) enzymes in eicitor-treated pepper cell, we used in vivo assay method and demonstrated a dramatic suppression of the activity by P450-inhibitors, ancymidol and ketocornazole. Using RT-PCR method with degenerate primer of the well conserved domains found within most P450-enzymes, and using cDNA library screening method, one distinct cDNA, being designated P450Hy01, was successfully isolated from elicitor-treated pepper cells. P450Hy01 mRNA was all induced in elicitor-treated cells whereas never induced in control cells. Moreover, levels of P450Hy01 expression were highly correlated with the levels of extracellular capsidiol production by different elicitors in cell cultures. P450Hy01 transcript was also induced by several other elicitors such as, cellulase, arachidonic acid, jasmonic acid, yeast extract as well as UV stress. P450Hy01 sequence contained high probability amino acid matches to known Plant P450 genes and ORF with a conserved FxxGxRxCxG heme-binding domain. P450Hy01 cDNA showed 98% of homology in sequence of nucleotide as well as amino acid to 5-epi-aristolochene-1, 3-hydroxylase (5EAl, 3H) which has been isolated in tobacco cells, suggesting that P450Hy01 is prominent candidate gene for P450-enzyme encoding 5EAl, 3H in pepper cell.

Inactivation of the DevS Histidine Kinase of Mycobacterium smegmatis by the Formation of the Intersubunit Disulfide Bond (Subunit 간의 disulfide 결합 형성에 의한 Mycobacterium smegmatis DevS histidine kinase의 불활성화)

  • Lee, Jin-Mok;Park, Kwang-Jin;Kim, Min-Ju;Ko, In-Jeong;Oh, Jeong-Il
    • Journal of Life Science
    • /
    • v.20 no.6
    • /
    • pp.853-860
    • /
    • 2010
  • The DevSR two-component system is a major regulatory system involved in redox sensing in Mycobacterium smegmatis. The DevSR system consists of the DevS histidine kinase and its cognate DevR response regulator. When exposed to hypoxic conditions, the DevS histidine kinase is activated to phosphorylate the DevR response regulator, leading to the transcriptional activation of the DevR regulation. The ligand-binding state of the heme embedded in the N-terminal GAF domain of DevS determines the kinase activity of DevS. In this study, we demonstrated that the redox-responsive cysteine (C547) in the C-terminal kinase domain is involved in the redox-dependent control of DevS kinase activity. The formation of an intersubunit disulfide bond between the C547 residues in the presence of $O_2$ led to inactivation of DevS kinase activity. The reduction of the oxidized DevS with reductants such as $\beta$-mercaptoethanol and dithiothreitol resulted in the restoration of DevS kinase activity. It was demonstrated in vivo by complementation test that the substitution of C547 to alanine partially impaired the sensory function of DevS in M. smegmatis.

Oxymatrine inhibits the pyroptosis in rat insulinoma cells by affecting nuclear factor kappa B and nuclear factor (erythroid-derived 2)-like 2 protein/heme oxygenase-1 pathways

  • Gao, Jingying;Xia, Lixia;Wei, Yuanyuan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.3
    • /
    • pp.165-174
    • /
    • 2022
  • As the mechanism underlying glucose metabolism regulation by oxymatrine is unclear, this study investigated the effects of oxymatrine on pyroptosis in INS-1 cells. Flow cytometry was employed to examine cell pyroptosis and reactive oxygen species (ROS) production. Cell pyroptosis was also investigated via transmission electron microscopy and lactate dehydrogenase (LDH) release. Protein levels were detected using western blotting and interleukin (IL)-1β and IL-18 secretion by enzyme-linked immunosorbent assay. The caspase-1 activity and DNA-binding activity of nuclear factor kappa B (NF-κB) and nuclear factor (erythroid-derived 2)-like 2 protein (Nrf2) were also assessed. In the high glucose and high fat-treated INS-1 cells (HG + PA), the caspase-1 activity and LDH content, as well as Nod-like receptor family pyrin domain containing 3, Gsdmd-N, caspase-1, apoptosis-associated speck-like protein containing a CARD, IL-1β, and IL-18 levels were increased. Moreover, P65 protein levels increased in the nucleus but decreased in the cytoplasm. Oxymatrine attenuated these effects and suppressed high glucose and high fat-induced ROS production. The increased levels of nuclear Nrf2 and heme oxygenase-1 (HO-1) in the HG + PA cells were further elevated after oxymatrine treatment, whereas cytoplasmic Nrf2 and Keleh-like ECH-associated protein levels decreased. Additionally, the elevated transcriptional activity of p65 in HG + PA cells was reduced by oxymatrine, whereas that of Nrf2 increased. The results indicate that the inhibition of pyroptosis in INS-1 cells by oxymatrine, a key factor in its glucose metabolism regulation, involves the suppression of the NF-κB pathway and activation of the Nrf2/HO-1 pathway.

Molecular Characterization of Cinnamate 4-Hydroxylase gene in Red Hot Pepper (Capsicum annuum L.) (고추에서 분리한 Cinnamate 4-Hydroxylase 유전자의 분자생물학적 특성)

  • Kim Kye-Won;Ha Sun-Hwa;Cho Kang-Jin;Kim Eun-Ju;Lee Min-Kyung;Yu Jae-Ju;Kim Jong-Guk;Lee Shin-Woo
    • Journal of Plant Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.167-173
    • /
    • 2005
  • Three different cDNAS for cinnamate 4-hydroxylase (C4H) which are involved in the second step of the general phenylpropanoid pathway were isolated and designated as pc4h1 (1,755 bp), pc4h2 (1,655 bp), and pc4h3 (1,316 bp), respectively. The nucleotide sequence analysis revealed that both pc4h1 and pc4h2 clones encode polypeptides of 505 amino acids frame but pc4h3 clone was truncated at the 5'-end of coding region. The alignment of the deduced amino acid sequences showed that PC4H1 and PC4H2 are highly homologous (95.8% identical) with each other and contain three conserved domains which are typical in cytochrome P450 monooxygenase: proline-rich region, threonine-containing binding pocket for the oxygen molecule, and heme binding region. In addition, result of the phylogenic tree analysis revealed that both pepper C4Hs belong to Class 1. pc4h2 transcription was strongly induced in wounded fruit (400%) and root (200%) relative to its very low basal level but not in leaf or stem tissue. In case of pc4h1, the basal level of transcription was higher than pc4h2 but induction by wounding was lower in fruit and root while leaf and stem tissues did not respond to wounding. The basal level of pc4h3 transcripts was not, if any, detectable and response to wounding was not observed.

Cloning and Characterization of Cinnamate-4-Hydroxylase Gene from Rubus occidentalis L.

  • Lee, Eun Mi;Lee, Seung Sik;An, Byung Chull;Barampuram, Shyamkumar;Kim, Jae-Sung;Cho, Jae-Young;Lee, In-Chul;Chung, Byung Yeoup
    • Journal of Radiation Industry
    • /
    • v.2 no.3
    • /
    • pp.97-104
    • /
    • 2008
  • Cinnamate-4-hydroxylase (C4H) is a key enzyme of phenylpropanoid pathway, which leads a variety of secondary metabolites to participate in differentiation and protection of plant against environmental stresses. In this study, we isolated a full-length cDNA of the C4H gene from a black raspberry (Rubus occidentalis L.), using a reverse transcriptase-PCR and rapid amplification of the cDNA ends (RACE)-PCR. The full-length cDNA of the RocC4H gene contained a 1,515 bp open reading frame (ORF) encoding a 504 amino acid protein with a calculated molecular weight of about 57.9 kDa and an isoelectric point (pI) value of 9.1. The genomic DNA analysis revealed that RocC4H gene had three exons and two introns. By multiple sequence alignment, RocC4H protein was highly homologous with other plant C4Hs, and the cytochrome P450-featured motifs, such as the heme-binding domain, the T-containing binding pocket motif (AAIETT), the ERR triad, and the tetrapeptide (PPGP) hinge motif, were highly conserved. Southern blot analysis revealed that RocC4H is a single copy gene in R. occidentalis.

Cobalt complex structure of the sirohydrochlorin chelatase SirB from Bacillus subtilis subsp. spizizenii (Bacillus subtilis subsp. spizizenii의 sirohydrochlorin chelatase SirB의 코발트 복합체 구조)

  • Nam, Mi Sun;Song, Wan Seok;Park, Sun Cheol;Yoon, Sung-il
    • Korean Journal of Microbiology
    • /
    • v.55 no.2
    • /
    • pp.123-130
    • /
    • 2019
  • Chelatase catalyzes the insertion of divalent metal into tetrapyrrole and plays a key role in the biosynthesis of metallated tetrapyrroles, such as cobalamin, siroheme, heme, and chlorophyll. SirB is a sirohydrochlorin (SHC) chelatase that generates cobalt-SHC or iron-SHC by inserting cobalt or iron into the center of sirohydrochlorin tetrapyrrole. To provide structural insights into the metal-binding and SHC-recognition mechanisms of SirB, we determined the crystal structure of SirB from Bacillus subtilis subsp. spizizenii (bssSirB) in complex with cobalt ions. bssSirB forms a monomeric ${\alpha}/{\beta}$ structure that consists of two domains, an N-terminal domain (NTD) and a C-terminal domain (CTD). The NTD and CTD of bssSirB adopt similar structures with a four-stranded ${\beta}-sheet$ that is decorated by ${\alpha}-helices$. bssSirB presents a highly conserved cavity that is generated between the NTD and CTD and interacts with a cobalt ion on top of the cavity using two histidine residues of the NTD. Moreover, our comparative structural analysis suggests that bssSirB would accommodate an SHC molecule into the interdomain cavity. Based on these structural findings, we propose that the cavity of bssSirB functions as the active site where cobalt insertion into SHC occurs.

Effects of dietary Antrodia cinnamomea fermented product supplementation on metabolism pathways of antioxidant, inflammatory, and lipid metabolism pathways-a potential crosstalk

  • Lee, M.T.;Lin, W.C.;Lin, L.J.;Wang, S.Y.;Chang, S.C.;Lee, T.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.7
    • /
    • pp.1167-1179
    • /
    • 2020
  • Objective: This study was conducted to fathom the underlying mechanisms of nutrition intervention and redox sensitive transcription factors regulated by Antrodia cinnamomea fermented product (FAC) dietary supplementation in broiler chickens. Methods: Four hundreds d-old broilers (41±0.5 g/bird) assigned to 5 groups were examined after consuming control diet, or control diet replaced with 5% wheat bran (WB), 10% WB, 5% FAC, and 10% FAC. Liver mRNA expression of antioxidant, inflammatory and lipid metabolism pathways were analyzed. Prostaglandin E2 (PGE2) concentration in each group were tested in the chicken peripheral blood mononuclear cells (cPBMCs) of 35-d old broilers to represent the stress level of the chickens. Furthermore, these cells were stimulated with 2,2'-Azobis(2-amidinopropane) dihydrochloride (AAPH) and lipopolysaccharide (LPS) to evaluate the cell stress tolerance by measuring cell viability and oxidative species. Results: Heme oxygenase-1, glutathione S-transferase, glutamate-cysteine ligase, catalytic subunit, and superoxide dismutase, and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) that regulates the above antioxidant genes were all up-regulated significantly in FAC groups. Reactive oxygen species modulator protein 1 and NADPH oxygenase 1 were both rather down-regulated in 10% FAC group as comparison with two WB groups. Despite expressing higher level than control group, birds receiving diet containing FAC had significantly lower expression level in nuclear factor-kappa B (NF-κB) and other genes (inducible nitric oxide synthase, tumor necrosis factor-α, interleukin-1β, nucleotide-binding domain, leucine-richcontaining family, pyrin domain-containing-3, and cyclooxygenase 2) involving in inflammatory pathways. Additionally, except for 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase that showed relatively higher in both groups, the WB, lipoprotein lipase, Acetyl-CoA carboxylase, fatty acid synthase, fatty acid binding protein, fatty acid desaturase 2 and peroxisome proliferator-activated receptor alpha genes were expressed at higher levels in 10% FAC group. In support of above results, promoted Nrf2 and inhibited NF-κB nuclear translocation in chicken liver were found in FAC containing groups. H2O2 and NO levels induced by LPS and AAPH in cPBMCs were compromised in FAC containing diet. In 35-d-old birds, PGE2 production in cPBMCs was also suppressed by the FAC diet. Conclusion: FAC may promote Nrf2 antioxidant pathway and positively regulate lipid metabolism, both are potential inhibitor of NF-κB inflammatory pathway.

Production of Gamma-Linolenic Acid in Pichia pastoris by Expression of a Delta-6 Desaturase Gene from Cunninghamella echinulata

  • Wan, Xia;Zhang, Yinbo;Wang, Ping;Huang, Fenghong;Chen, Hong;Jiang, Mulan
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.10
    • /
    • pp.1098-1102
    • /
    • 2009
  • Gamma-linolenic acid (GLA, C18:3 ${\Delta}^{6,9,12}$) is synthesized by a delta-6 fatty acid desaturase using linoleic acid (LA, C18:2 ${\Delta}^{9,12}$) as a substrate. To enable the production of GLA in the conventional yeast Pichia pastoris, we have isolated a cDNA encoding the delta-6 fatty acid desaturase from Cunninghamella echinulata MIAN6 and confirmed its function by heterogeneous expression in P. pastoris. Sequence analysis indicated that this cDNA sequence has an open reading frame of 1,404 bp, which encodes a 52 kDa peptide of 468 amino acids. This sequence has 64% identity to the previously reported delta-6 fatty acid desaturase from Rhizopus oryzae. The polypeptide has a cytochrome b5 domain at the N-terminus including the HPGG motif in the heme-binding region, as reported for other delta-6 fatty acid desaturases. In addition, this enzyme differs from other desaturases by the presence of three possible N-linked glycosylation sites. Analysis of the fatty acid composition demonstrated the accumulation of GLA to the level of 3.1% of the total fatty acids. Notably, the amounts of ginkgolic acid (C17:1) and palmitic acid (C16:0) were increased from 1.3% to 29.6% and from 15% to 33%, respectively. These results reveal that the modification of the fatty acid biosynthetic pathway by genetic manipulation in order to produce specific polyunsaturated fatty acids in P. pastoris is a promising technique.