• Title/Summary/Keyword: Helmholtz decomposition

Search Result 14, Processing Time 0.02 seconds

HELMHOLTZ DECOMPOSITION AND SEMIGROUP THEORY TO THE FLUID AROUND A MOVING BODY

  • Bae, Hyeong-Ohk
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.3
    • /
    • pp.661-676
    • /
    • 2020
  • To understand the interaction of a fluid and a rigid body, we use the concept of B-evolution. Then in a similar way to the usual Navier-Stokes system, we obtain a Helmholtz type decomposition. Using B-evolution theory and the decomposition, we work on the semigroup to analyze the linear part of the system.

CONVERGENCE ANALYSIS ON GIBOU-MIN METHOD FOR THE SCALAR FIELD IN HODGE-HELMHOLTZ DECOMPOSITION

  • Min, Chohong;Yoon, Gangjoon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.4
    • /
    • pp.305-316
    • /
    • 2014
  • The Hodge-Helmholtz decomposition splits a vector field into the unique sum of a divergence-free vector field (solenoidal part) and a gradient field (irrotational part). In a bounded domain, a boundary condition needs to be supplied to the decomposition. The decomposition with the non-penetration boundary condition is equivalent to solving the Poisson equation with the Neumann boundary condition. The Gibou-Min method is an application of the Poisson solver by Purvis and Burkhalter to the decomposition. Using the $L^2$-orthogonality between the error vector and the consistency, the convergence for approximating the divergence-free vector field was recently proved to be $O(h^{1.5})$ with step size h. In this work, we analyze the convergence of the irrotattional in the decomposition. To the end, we introduce a discrete version of the Poincare inequality, which leads to a proof of the O(h) convergence for the scalar variable of the gradient field in a domain with general intersection property.

Free In-plane Vibration of a Clamped Circular Plate (고정된 원형 플레이트의 평면내 자유진동)

  • Park, Chan-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.836-839
    • /
    • 2005
  • The in-plane vibration response of a clamped circular plate should be predicted in many applications. Up to now, papers on the in-plane vibration of rectangular plate are published. However, analytical derivation on the in-plane vibration of the clamped circular plate is not carried out. Therefore, the in-plane vibration of the clamped circular plate is the concern of this paper. In order to derive the equations of motion for the clamped circular plate in the cylindrical coordinate, the kinetic energy and potential energy for the in-plane behavior are obtained by us ing the stress-strain-displacement expressions. Application of Hamilton's principle leads to two sets of differential equations. These displacement equations were highly coupled. It is possible to obtain a simpler set of equations by introducing Helmholtz decomposition. Substituting them into the coupled differential equations, we obtain the uncoupled equations of motion. In order to solve them, we assume that the solutions are harmonic. Then, they lead to the wave equations. Using the separation of variable, we obtain the general solutions for the equations. Based on the solutions, the displacements for r and $\theta$ direction are assumed. Finally we obtain the frequency equation for the clamped circular plate by the application of boundary conditions. The derived equation is compared with the finite element analysis for validation by using the some numerical examples.

  • PDF

A Study on Eigen-properties of a 3-Dim. Resonant Cavity by Krylov-Schur Iteration Method (Krylov-Schur 순환법을 이용한 3-차원 원통구조 도파관의 고유특성 연구)

  • Kim, Yeong Min;Lim, Jong Soo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.7
    • /
    • pp.142-148
    • /
    • 2014
  • Krylov-Schur iteration method has been applied to the 3-Dim. resonant cavity of a cylindrical form. The vector Helmholtz equation has been analysed for the resonant field strength in homogeneous media by FEM. An eigen-equation has been constructed from element equations basing on tangential edges of the tetrahedra element. This equation made up of two square matrices associated with the curl-curl form of the Helmholtz operator. By performing Krylov-Schur iteration loops on them, Eigen-values and their modes have been determined from the diagonal components of the Schur matrices and its transforming matrices. Eigen-pairs as a result have been revealed visually in the schematic representations. The spectra have been compared with each other to identify the effect of boundary conditions.

Applied Koopmanistic interpretation of subcritical prism wake physics using the dynamic mode decomposition

  • Cruz Y. Li;Xisheng Lin;Gang Hu;Lei Zhou;Tim K.T. Tse;Yunfei Fu
    • Wind and Structures
    • /
    • v.37 no.3
    • /
    • pp.191-209
    • /
    • 2023
  • This work investigates the subcritical free-shear prism wake at Re=22,000 by the Koopman analysis using the Dynamic Mode Decomposition (DMD) algorithm. The Koopman model linearized nonlinearities in the stochastic, homogeneous anisotropic turbulent wake, generating temporally orthogonal eigen tuples that carry meaningful, coherent structures. Phenomenological analysis of dominant modes revealed their physical interpretations: Mode 1 renders the mean-field dynamics, Modes 2 describes the roll-up of the Strouhal vortex, Mode 3 describes the Bloor-Gerrard vortex resulting from the Kelvin-Helmholtz instability inside shear layers, its superposition onto the Strouhal vortex, and the concurrent flow entrainment, Modes 6 and 10 describe the low-frequency shedding of turbulent separation bubbles (TSBs) and turbulence production, respectively, which contribute to the beating phenomenon in the lift time history and the flapping motion of shear layers, Modes 4, 5, 7, 8, and 9 are the relatively trivial harmonic excitations. This work demonstrates the Koopman analysis' ability to provide insights into free-shear flows. Its success in subcritical turbulence also serves as an excellent reference for applications in other nonlinear, stochastic systems.

Vibration analysis of wave motion in micropolar thermoviscoelastic plate

  • Kumar, Rajneesh;Partap, Geeta
    • Structural Engineering and Mechanics
    • /
    • v.39 no.6
    • /
    • pp.861-875
    • /
    • 2011
  • The aim of the present article is to study the micropolar thermoelastic interactions in an infinite Kelvin-Voigt type viscoelastic thermally conducting plate. The coupled dynamic thermoelasticity and generalized theories of thermoelasticity, namely, Lord and Shulman's and Green and Lindsay's are employed by assuming the mechanical behaviour as dynamic to study the problem. The model has been simplified by using Helmholtz decomposition technique and the resulting equations have been solved by using variable separable method to obtain the secular equations in isolated mathematical conditions for homogeneous isotropic micropolar thermo-viscoelastic plate for symmetric and skew-symmetric wave modes. The dispersion curves, attenuation coefficients, amplitudes of stresses and temperature distribution for symmetric and skew-symmetric modes are computed numerically and presented graphically for a magnesium crystal.

FINITE ELEMENT APPROXIMATION OF THE DISCRETE FIRST-ORDER SYSTEM LEAST SQUARES FOR ELLIPTIC PROBLEMS

  • SHIN, Byeong-Chun
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.3
    • /
    • pp.563-578
    • /
    • 2005
  • In [Z. Cai and B. C. Shin, SIAM J. Numer. Anal. 40 (2002), 307-318], we developed the discrete first-order system least squares method for the second-order elliptic boundary value problem by directly approximating $H(div){\cap}H(curl)-type$ space based on the Helmholtz decomposition. Under general assumptions, error estimates were established in the $L^2\;and\;H^1$ norms for the vector and scalar variables, respectively. Such error estimates are optimal with respect to the required regularity of the solution. In this paper, we study solution methods for solving the system of linear equations arising from the discretization of variational formulation which possesses discrete biharmonic term and focus on numerical results including the performances of multigrid preconditioners and the finite element accuracy.

A fast adaptive numerical solver for nonseparable elliptic partial differential equations

  • Lee, June-Yub
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.2 no.1
    • /
    • pp.27-39
    • /
    • 1998
  • We describe a fast numerical method for non-separable elliptic equations in self-adjoin form on irregular adaptive domains. One of the most successful results in numerical PDE is developing rapid elliptic solvers for separable EPDEs, for example, Fourier transformation methods for Poisson problem on a square, however, it is known that there is no rapid elliptic solvers capable of solving a general nonseparable problems. It is the purpose of this paper to present an iterative solver for linear EPDEs in self-adjoint form. The scheme discussed in this paper solves a given non-separable equation using a sequence of solutions of Poisson equations, therefore, the most important key for such a method is having a good Poison solver. High performance is achieved by using a fast high-order adaptive Poisson solver which requires only about 500 floating point operations per gridpoint in order to obtain machine precision for both the computed solution and its partial derivatives. A few numerical examples have been presented.

  • PDF

A Comparison of a Lagrangian Vortex Method with a Finite Volume Method for the Vorticity-Velocity Formulation. (와도-속도 정식화에서 Lagrangian 보오텍스법과 유한체적법의 비교)

  • Kim Kwang-Soo;Lee Seung-Jae;Suh Jung-Chun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.47-52
    • /
    • 2002
  • We present an improved Lagrangian vortex method in 2-D incompressible unsteady viscous flows, which is based on a mesh-free integral approach of the velocity-vorticity formulation. Vorticity fields are represented by discrete vortex blobs that are updated by the Lagrangian vorticity transport with the particle strength exchange scheme. Velocity fields are expressed in a form of the Helmholtz decomposition, which are calculated by a fast algorithm of the Biot-Savart integration with a smoothed kernel and by a well-established panel method. No-slip condition is enforced through viscous diffusion of vorticity from a solid body into field. The vorticity flux is determined in such a way that spurious slip velocity vanishes. Through the comparison with the existing finite volume scheme for the transient vortical flows around an impulsively started cylinder at Reynolds number Re=550, we would obtain a more accurate scheme for vortex methods in complicated flows.

  • PDF

Computation of pressure fields in application of the Lagrangian vortex method (Lagrangian 보우텍스방법에서의 압력장계산)

  • Kim K. S.;Lee S. J.;Suh J. C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.37-42
    • /
    • 2003
  • A vorticity-velocity integro-differential formulation of incompressible Wavier-Stokes equations is described, focusing on a scheme for calculating pressure fields in application of the Lagrangian vortex method in connection with panel methods. It deals with the dynamic coupling among velocity, vorticity and pressure, and the Helmholtz decomposition of the velocity field, through a comparative study with the Eulerian finite volume method, we provide an extensive understanding of the Lagrangian vortex methods for numerical simulations of viscous flows around arbitrary bodies.

  • PDF