• Title/Summary/Keyword: Hello timer

Search Result 3, Processing Time 0.015 seconds

Dynamic Adjustment of Hello and Hold Timer in AODV Routing Protocol

  • Godfrey, Daniel;Kim, Ki-Il
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.5
    • /
    • pp.251-259
    • /
    • 2020
  • Ad hoc On-demand Distance Vector (AODV) protocol and its variants employ two important timers, hello and hold timer to keep track of topology changes. Moreover, hold timer is computed by multiplying constant value to hello timer. But, this configuration leads to inaccurate settings of hold timer. To solve this problem, in this paper, we propose a new dynamic adjustment of hello and hold timer scheme by removing dependency between them. A new metric to measure mobility is applied into hello timer, while expected link lifetime does holder timer. Simulation results show a significant reduction in the number of messages, a fact suggesting that it is possible to maintain and in some cases improve the performance of AODV with a minimum amount of messages released into the network.

Topology Graph Generation Based on Link Lifetime in OLSR (링크 유효시간에 따른 OLSR 토폴로지 그래프 생성 방법)

  • Kim, Beom-Su;Roh, BongSoo;Kim, Ki-Il
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.4
    • /
    • pp.219-226
    • /
    • 2019
  • One of the most widely studied protocols for tactical ad-hoc networks is Optimized Link State Routing Protocol (OLSR). As for OLSR research, most research work focus on reducing control traffic overhead and choosing relay point. In addition, because OLSR is mostly dependent on link detection and propagation, dynamic Hello timer become research challenges. However, different timer interval causes imbalance of link validity time by affecting link lifetime. To solve this problem, we propose a weighted topology graph model for constructing a robust network topology based on the link validity time. In order to calculate the link validity time, we use control message timer, which is set for each node. The simulation results show that the proposed mechanism is able to achieve high end-to-end reliability and low end-to-end delay in small networks.

An Efficient Route Discovery using Adaptive Expanding Ring Search in AODV-based MANETs (AODV 기반의 MANET에서 적응적인 확장 링 검색을 이용한 효율적인 경로 탐색)

  • Han, Seung-Jin
    • The KIPS Transactions:PartC
    • /
    • v.14C no.5
    • /
    • pp.425-430
    • /
    • 2007
  • Without the aid of stationary infrastructure, maintaining routing information for all nodes is inefficient in the Mobile Ad hoc Networks(MANET). It is more efficient when every time routing information is necessary that the source node broadcasts a query message to neighbour nodes. The source node using Ad hoc On-Demand distance Vector(AODV), which is one of the routing protocols of MANET, uses the Expanding Ring Search(ERS) algorithm which finds a destination node efficiently. In order to reduce the congestion of the network, ERS algorithm does not broadcast Route REQuest(RREQ) messages in the whole network. When the timer expires, if source node does not receive Route REPly(RREP) messages from the destination node, it gradually increases TTL value and broadcasts RREQ messages. Existing AODV cost a great deal to find a destination node because it uses a fixed NODE_TRAVERSAL_TIME value. Without the message which is added in existing AODV protocols, this paper measures delay time among the neighbours' nodes by making use of HELLO messages. We propose Adaptive ERS(AERS) algorithm that makes NET_TRAVERSAL_TIME optimum which apply to the measured delay time to NODE_TRAVERSAL_TIME. AERS suppresses the unnecessary messages, making NET_TRAVERSAL_TIME optimum in this paper. So we will be able to improve a network performance. We prove the effectiveness of the proposed method through simulation.