• Title/Summary/Keyword: Heliostat field design

Search Result 2, Processing Time 0.016 seconds

Design of Heliostat Field for 200kW Tower Type Solar Thermal Power Plant (200kW 탑형 태양열발전시스템의 Heliostat Field 설계)

  • Park, Young Chil
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.5
    • /
    • pp.41-51
    • /
    • 2012
  • Heliostat field is the most important subsystem in the tower type solar thermal power plant since its optical performance affects the total system efficiency most significantly while the construction cost of it is the major part of total construction cost in such a power plant. Thus a well designed heliostat field to maximize the optical efficiency as well as to minimize the land usage is very important. This work presents methodology, procedures and result of heliostat filed design for 200kW solar thermal power plant built recently in Daegu, Korea. A $2{\times}2(m)$ rectangular shaped receiver located at 43(m) high and tilted $28^{\circ}$ toward heliostat field, 450 of heliostats of which the reflective surface is formed by 4 of $1{\times}1(m)$ flat plate mirror facet, and the land area having about $140{\times}120(m)$ size are used to form the heliostat field. A procedure to deploy 450 heliostats in radial staggered nonblocking formation is developed. Also the procedures to compute the cosine effect, intercept ratio, blocking and shading ratio in the field are developed. Finally the heliostat filed is designed by finding the optimal radial distance and azimuthal spacing in radial staggered nonblocking formation such that the designed heliostat field optical efficiency could be maximized. The designed heliostat field has 77% of annual average optical efficiency, which is obtained by annually averaging the optical efficiencies computed between the time of where sun elevation angle becomes $10^{\circ}$ after sunrise and the time of where sun elevation angle becomes $10^{\circ}$ before sunset in each day.

Preliminary Simulation Study on 1 MWe STP System in China (중국 1 MWe급 태양열발전시스템에 대한 기초 운전해석)

  • Yao, Zhihao;Wang, Zhifeng;Kang, Yong-Heack;Kim, Jong-Kyu;Wei, Xiudong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.698-701
    • /
    • 2007
  • DAHAN, the first 1 MWe Solar Power Tower system locates north to Beijing where nearby The Great Wall is now under construction with cooperation between China and Korea. Results in predicting the preliminary performance of this central receiver system are presented in this paper. Operating cycles under some typical weather condition days are simulated and commented. These results can be used to assess the impact of alternative plant designs or operating strategies on annual energy production, with the final objective being to optimize the design of central receiver power plants. Two subsystems are considered in the system simulation: the solar field and the power block. Mathematic models are used to represent physical phenomena and relationships so that the characteristics of physical processes involving these phenomena can be predicted. Decisions regarding the best position for locating heliostats relative to the receiver and how high to place the receiver above the field constitute a multifaceted problem. Four different kinds of field layout are designed and analyzed by the use of ray tracing and mathematical simulation techniques to determine the overall optical performance ${\eta}_{field}$ and the spillage ${\eta}_{spill}$.The power block including a Rankine cycle is analyzed by conventional energy balance methods.

  • PDF