• Title/Summary/Keyword: Heliocentric Potential (HCP)

Search Result 2, Processing Time 0.014 seconds

Heliocentric Potential (HCP) Prediction Model for Nowscast of Aviation Radiation Dose

  • Hwang, Junga;Kim, Kyung-Chan;Dokgo, Kyunghwan;Choi, Enjin;Kim, Hang-Pyo
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.1
    • /
    • pp.39-44
    • /
    • 2015
  • It is well known that the space radiation dose over the polar route should be carefully considered especially when the space weather shows sudden disturbances such as CME and flares. The National Meteorological Satellite Center (NMSC) and Korea Astronomy and Space Science Institute (KASI) recently established a basis for a space radiation service for the public by developing a space radiation prediction model and heliocentric potential (HCP) prediction model. The HCP value is used as a critical input value of the CARI-6 and CARI-6M programs, which estimate the aviation route dose. The CARI-6/6M is the most widely used and confidential program that is officially provided by the U.S. Federal Aviation Administration (FAA). The HCP value is given one month late in the FAA official webpage, making it difficult to obtain real-time information on the aviation route dose. In order to overcome this limitation regarding time delay, we developed a HCP prediction model based on the sunspot number variation. In this paper, we focus on the purpose and process of our HCP prediction model development. Finally, we find the highest correlation coefficient of 0.9 between the monthly sunspot number and the HCP value with an eight month time shift.

Improving the Accuracy of a Heliocentric Potential (HCP) Prediction Model for the Aviation Radiation Dose

  • Hwang, Junga;Yoon, Kyoung-Won;Jo, Gyeongbok;Noh, Sung-Jun
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.279-285
    • /
    • 2016
  • The space radiation dose over air routes including polar routes should be carefully considered, especially when space weather shows sudden disturbances such as coronal mass ejections (CMEs), flares, and accompanying solar energetic particle events. We recently established a heliocentric potential (HCP) prediction model for real-time operation of the CARI-6 and CARI-6M programs. Specifically, the HCP value is used as a critical input value in the CARI-6/6M programs, which estimate the aviation route dose based on the effective dose rate. The CARI-6/6M approach is the most widely used technique, and the programs can be obtained from the U.S. Federal Aviation Administration (FAA). However, HCP values are given at a one month delay on the FAA official webpage, which makes it difficult to obtain real-time information on the aviation route dose. In order to overcome this critical limitation regarding the time delay for space weather customers, we developed a HCP prediction model based on sunspot number variations (Hwang et al. 2015). In this paper, we focus on improvements to our HCP prediction model and update it with neutron monitoring data. We found that the most accurate method to derive the HCP value involves (1) real-time daily sunspot assessments, (2) predictions of the daily HCP by our prediction algorithm, and (3) calculations of the resultant daily effective dose rate. Additionally, we also derived the HCP prediction algorithm in this paper by using ground neutron counts. With the compensation stemming from the use of ground neutron count data, the newly developed HCP prediction model was improved.