• Title/Summary/Keyword: Helical Coil

Search Result 82, Processing Time 0.024 seconds

Experimental Study of Friction Factors for Laminar, Transition, and Turbulent Flow Regimes in Helical Coil Tubes (헬리컬 코일 튜브에서의 층류, 천이, 난류 영역의 마찰계수에 대한 실험적 연구)

  • Park, Won Ki;Kim, Taehoon;Do, Kyu Hyung;Han, Yong-Shik;Choi, Byung-Il
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.1
    • /
    • pp.7-15
    • /
    • 2018
  • The friction factors according to the flow regimes in helical coil tubes depend on the coil diameter, the tube diameter, and the coil pitch. In previous studies, correlations for the laminar flow regime in helical coil tubes have been proposed. However, studies on the transition flow regime and the turbulent flow regime are insufficient and further researches are necessary. In this study, characteristics of the friction factors for the laminar, transition and turbulent flow regimes in helical coil tubes were experimentally investigated. The helical coil tubes used in the experiments were made of copper. The curvature ratios of the helical coil tubes, which means the ratio of helical coil diameter to inner diameter of the helical coil tube are 24.5 and 90.9. Experiments were carried out in the range of $529{\leq}Re{\leq}39,406$ to observe the flows from the laminar to the turbulent regime. The friction factors were obtained by measuring the differential pressures according to the flow rates in the helical coil tubes while varying the curvature ratios of the helical coil tubes. Experimental data show that the friction factors for the helical coil tube with 24.5 in the curvature ratio of the helical coil tube were larger than those in the straight tube in all flow regimes. As the curvature ratio of the helical coil tube increases, the friction factor in turbulent flow regime tends to be equal to that of the straight tube. In addition, it was confirmed that the transition flow regimes in the helical coil tubes were much wider than those in the straight tube, also the critical Reynolds numbers were larger than those in the straight tube. The results obtained in this experimental study can be used as basic data for studies on the water hammer phenomenon in helical coil tubes.

Dynamic Behavior Analysis of a Helical Coil Spring Using Space Curve Vector (공간곡선 벡터에 의한 원통 코일 스프링의 동적 거동 해석)

  • 김대원;김종수
    • Journal of KSNVE
    • /
    • v.8 no.6
    • /
    • pp.1015-1022
    • /
    • 1998
  • This paper addresses the results of an experimental and analytical research of a helical coil spring subjected to dynamic behavior using space curve vector after considering elongation rate. Vibrations in helical coil spring can be divided into 3 modes such as vibrations of coil spring center axis' vertical direction. axis' horizontal direction, direction about center axis. However. these 3 modes are dependent one another and are characterized as coupled. The dependency was proved through both theoretically and experimentally analyzing the results of dynamic characteristics of coil spring center axis' vertical direction vibration by transfer matrix method using the governing equation of static equilibrium. Also this paper shows that pitch angle and active coils in coil spring affect the dynamic spring characteristics of the above 3 modes and are especially sensitive to the mode for vibration of axis' horizontal direction which most affects especially on dynamo stability of helical coil spring.

  • PDF

Optimization of Coil Design for Helical Magneto-Cumulative Generators (나선형 자장압축발전기의 코일설계 최적화)

  • 국정현;이흥호
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.8
    • /
    • pp.477-487
    • /
    • 2004
  • Helical magneto-cumulative generators(MCGs) are devices which convert explosive energy into electromagnetic energy. The electromagnetic energy supplied from an external circuit is amplified by an explosively driven metal conductor mounted at the center of a helical coil compressing magnetic flux between the conductor and the coil. To optimize the coil design, output properties of small-size helical MCGs were measured while varying design parameters; the number of coil sections, length of the sections, pitch in the sections, and type of copper wire. Dimensions of the coil were kept constant, 50 mm in diameter and 200 mm in length. The coil was fabricated by using enamel-coated copper wire of 1 mm in diameter. The highest energy amplification ratio and figure of merit were 52.5 and 0.81, respectively. from an helical MCG with initial inductance of 63.7 $\mu$H at initial energy of 0.152 kJ Based on the experimental and calculated results, empirical formulas capable of optimizing coil designs were derived. By using these formulas, pitch in each coil section can be obtained at an arbitrary inductive load for high energy amplification ratio and figure of merit.

Heat Transfer Characteristics of Inclined Helical Coil Type Heat Exchanger (경사진 헬리컬 코일 열교환기의 열전달 특성에 관한 연구)

  • Son, Chang-Hyo;Jeon, Min-Ju;Jang, Seong-Il;Oh, Hoo-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.707-714
    • /
    • 2007
  • The heat transfer coefficient and Pressure drop during gas cooling process of $CO_2$ (R-744) in inclined helical coil copper tubes were investigated experimentally. The main components of the refrigerant loop are a receiver. a variable-speed pump. a mass flow meter, a pre-heater and a inclined helical coil type gas cooler (test section). The test section consists of a smooth copper tube of 2.45mm inner diameter. The refrigerant mass fluxes were varied from 200 to $600[kg/m^2s]$ and the inlet Pressures of gas cooler were 7.5 to 10.0 [MPa]. The heat transfer coefficients of $CO_2$ in the inclined helical coil tubes increases with the increase of mass flux and gas cooling pressure of $CO_2$. The pressure drop of $CO_2$ in the gas cooler shows a relatively good agreement with those Predicted by Ito's correlation developed for single-phase in a helical coil tube. The local heat transfer coefficient of $CO_2$ agrees well with the correlation by Pitla et al. However, at the region near pseudo-critical temperature. the experiments indicate higher values than the Pitla et al. correlation. Therefore. various experiments in the inclined helical coil tubes have to be conducted and it is necessary to develop the reliable and accurate prediction determining the heat transfer and pressure drop of $CO_2$ in the inclined helical coil tubes.

Cooling Heat Transfer Characteristics of $CO_2$ on Tube Geometry of Inclined Helical Coil Type Gas Coolers (경사진 헬리컬 코일형 가스냉각기의 관형상에 따른 $CO_2$ 냉각 열전달 특성)

  • Son, Chang-Hyo;Oh, Hoo-Kyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.9
    • /
    • pp.640-646
    • /
    • 2007
  • The cooling heat transfer coefficient of $CO_2$ (R-744) for tube and coil diameter (CD), inclined angle of tube and coil pitch of inclined helical coil type copper tubes were investigated experimentally. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and a inclined helical coil type gas cooler (test section). The test section consists of a smooth copper tube of 2.45 and 4.55 mm inner diameter (ID). The refrigerant mass flukes were varied from 200 to 800 [$kg/m^2s$] and the inlet pressures of gas cooler were 7.5 to 10.0 [MPa]. The heat transfer coefficients of $CO_2$ in inclined helical coil tube with 2.45 mm ID are $5{\sim}10.3%$ higher than those of 4.55 mm. The heat transfer coefficients of 41.35 mm CD are $8{\sim}32.4%$ higher than those of 26.75 mm CD. Comparison between $45^{\circ}\;and\;90^{\circ}$ of coil angle, the heat transfer coefficients of $45^{\circ}$ are higher than those of $90^{\circ}$. For coil pitch of gas cooler, the heat transfer coefficients of inclined helical coil gas cooler with coil pitch of 5 mm are similar to those of 10 and 15 mm.

Review for the Helical coil type and Spiral coil type in a mid range Wireless Power Transfer System (근거리 무선전력전송용 헬리컬 코일과 스파이럴 코일에 대한 고찰)

  • Park, Jae-Hyun;Yang, Hae-Youl;Kim, Chang-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.11-12
    • /
    • 2011
  • In electromagnetic coupled resonance(ECR) WPT system, the main key for wireless power transmission is the design method of the ECR coils. The ECR coils is classified to the helical coil(3D) type and the spiral coil(2D) type as a coil structure. The pattern of the spiral coil type has been studied in favor of commercialization. In this paper, the design characteristics of the helical coil and the spiral coil is considered using a Vector Network Analyzer. It is analyzed according to the distance of coupling coefficient between the ECR coils. Also, It is analyzed for the relationships such as the maximum transmission efficiency and the resonant frequency depending on the distance between the coils.

  • PDF

Heat Transfer Characteristics of Supercritical $CO_2$ in Helical Coil Gas Coolers on the Change of Coil Diameters (코일직경변화에 따른 헬리컬 코일형 가스냉각기내 초임계 이산화탄소의 냉각열전달 특성)

  • Son, Chang-Hyo
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.3
    • /
    • pp.44-48
    • /
    • 2007
  • The cooling heat transfer characteristics of supercritical $CO_2$ in a helical coil gas cooler on the change of coil diameters are experimentally investigated. The main components of the refrigerant loop are a receiver, a variable speed pump, a mass flow-meter, a pre-heater and a helical coil gas cooler (test section). The test sections are made of a copper tube which the inner diameter is 4.55 mm and the helical coil diameters are done of 26.75 mm and 41.35 mm. The mass fluxes of refrigerant are varied from 200 to 800 [$kg/m^2s$] and the inlet pressures of gas cooler are 7.5 to 10.0 (MPa). A gas cooler with helical coil diameter of 26.75 mm has larger heat transfer coefficient than that of 41.35 mm. Also, when compared with experimental data and published correlations avaliable, most of correlations are under-predicted, but Pitla published correlations avaliable, most of correlations are under-predicted, but Pitla et al.'s correlation shows a relatively good coincidence with the experimental data except the region of pseudo critical temperature.

  • PDF

Digital Filter Model for Analog Helical Coil Spring Reverberator (헬리컬 코일 스프링 잔향기의 디지털 필터 모델)

  • Park Joon;Chon Sang-Bae;Lee Jong-Hoon;Sung Koeng-Mo;Song Sang-Seob
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.6
    • /
    • pp.291-297
    • /
    • 2006
  • This paper proposes a new Digital Reverberator that models Analog Helical Coil Spring Reverberator for guitar amplifiers. While the conventional digital reverberators are proposed to provide better sound field mainly based on room acoustics, no algorithm or analysis of digital reverberators those model Helical Coil Spring Reverberator was proposed. Considering the fact that approximately $70{\sim}80$ percent of guitar amplifiers are still with Helical Coil Spring Reverberator, research was performed based not on Room Acoustics but on Helical Coil Spring Reverberator itself as an effector. After performing simulations with proposed algorithm, it was confirmed that the Digital Reverberator by proposed algorithm provides perceptually equivalent response to the conventional Analog Helical Coil Spring Reverberators.

Modeling of an Once Through Helical Coil Steam Generator of a Superheated Cycle for Sizing Analysis

  • Kim, Yeon-Sik;Sim, Yoon-Sub;Kim, Eui-Kwang
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.558-563
    • /
    • 1997
  • A thermal sizing code, named as HSGSA (Helical coil Steam Generator Sizing Analyzer), for a sodium heated helical coil steam generator is developed for KALIMER (Korea Advanced LIquid MEtal Reactor) design. The theoretical modeling of the shell and tube sides is described and relevant correlations are presented. For assessment of HSGSA, a reference plant design case is compared to the calculational outputs from HSGSA simulation.

  • PDF

Cooling Heat Transfer Characteristics of CO2 in Helical Coil Type Gas Coolers (헬리컬 코일형 가스냉각기 내 CO2의 냉각 열전달 특성)

  • Son, Chang-Hyo;Jeon, Min-Ju;Oh, Hoo-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.699-706
    • /
    • 2007
  • The cooling heat transfer coefficient and pressure drop of $CO_2$(R-744) in helical coil copper tubes were investigated experimentally The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter. a pre-heater and a inclined helical coil type gas cooler (test section). The test section consists of a smooth copper tube of 2.45 and 4.55mm inner diameter The refrigerant mass fluxes were varied from 200 to $600 [kg/m^2s]$ and the inlet pressures of 9as cooler were 7.5 to 10.0 [MPa]. The heat transfer coefficients of $CO_2$ in helical coil tubes increase with the increase of mass flux and gas cooling pressure of $CO_2$. The pressure drop of $CO_2$ in the gas cooler shows a relatively food agreement with those Predicted by Ito's correlation developed for single-phase in helical coil tubes. Though a few correlation available with the data. the local heat transfer coefficient of $CO_2$ agrees well with those presented by Pitla et al. among the predictions. However at the region near pseudo-critical temperature. the experiment data indicate higher values than the Pitla et al. correlation.