• Title/Summary/Keyword: Hela(Cervical cancer) and L929 cells

Search Result 1, Processing Time 0.018 seconds

Enhanced Hemolytic Biocompatibility of Hydroxyapatite by Chromium (Cr3+) Doping in Hydroxyapatite Nanoparticles Synthesized by Solution Combustion Method

  • Bandgar, Sneha S.;Yadav, Hemraj M.;Shirguppikar, Shailesh S.;Shinde, Mahesh A;Shejawal, Rajendra V.;Kolekar, Tanaji V.;Bamane, Sambhaji R.
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.2
    • /
    • pp.158-166
    • /
    • 2017
  • For the better success of biomedical implant surgery, we used a modified solution combustion method to synthesize Hydroxyapatite (HA) and Chromium ($Cr^{3+}$) modified Cr-HA with different concentrations of 0.5, 1.0, 1.5, 2.0 and 2.5. The Cr-HA nanopowder was characterized by TGA, XRD, SEM-EDS and TEM. The HA and Cr-HA powders were subjected to in vitro biological studies to determine their biocompatibility and hemocompatibility. The cytotoxicity of HA and Cr-HA were evaluated on Hela (Cervical cancer) cells and L929 (mouse fibroblast) cells by using MTT assay. Hemocompatibility studies demonstrated a noticeable haemolytic ratio below 5%, which confirms that these materials are compatible in nature with human blood. The results of the present work confirm that the synthesised HA and Cr-HA are biocompatible and can be extensively used in the biomedical field to improve overall material biological properties.