• 제목/요약/키워드: Height loss

검색결과 797건 처리시간 0.023초

신발형 리브의 형상변화가 열전달 및 압력 강하에 미치는 영향 (Effects of Geometry of a Boot-Shaped Rib on Heat Transfer and Pressure Drop)

  • 서재원;김준희;김광용
    • 한국유체기계학회 논문집
    • /
    • 제18권3호
    • /
    • pp.66-73
    • /
    • 2015
  • This paper deals with a parametric study on boot-shaped ribs in a rectangular cooling channel. Numerical analysis of the flow and heat transfer was performed using three-dimensional Reynolds averaged Navier-Stokes equations with the Speziale, Sarkar and Gatski turbulence model. The parametric study was performed for the parameters, tip width-to rib width, tip height-to-rib height, rib height-to-channel height, and rib height-to-width ratios. To assess the cooling performance and friction loss, Numsselt number and friction factor were defined as the performance parameter, respectively. The results showed that the cooling performance and friction loss were seriously affected by the four geometric parameters.

Effects of Coating Materials on Fluidity and Temperature Loss of Molten Metals from Runner Systems in Full Moulds.

  • Cho, Nam-Don;Kim, Yong-Hyun;Choi, Jung-Kwon
    • 한국주조공학회지
    • /
    • 제10권1호
    • /
    • pp.31-42
    • /
    • 1990
  • The full mould casting process in one of the newly developed techniques which has many advantages. Unbonded sand mould has been prepared for the major mould and $CO^2$ gas mould has been used occasionally for comparison. Patterns were built up with expanded polystyrene and coated with three different materials. Silica, graphite and zircon were used for the coating layer. The effects on fluidity and temperature loss of molten metals were investigated. The molten metals were Al-5% Si alloy, Cu-30% Zn alloy and gray iron of approximately 4.0% of carbon equivalent. Experimental variables were runner section area, superheat, sprue height, coating materials, coating thickness and apparent density of EPS pattern. The effects of coating materials on fluidity and temperature loss of the molten metals during transient pouring are summarized as follows : As runner section area, superheat and sprue height increased, fluidity increased. Temperature loss decreased as runner section area and sprue height increased. However, reversed effects were observed in the case of superheat increment. The coating materials decreased the fluidity of each alloy in the order of silica, graphite and zircon. Zircon brought to the highest temperature loss among the coating materials used. The fluidity increased in the order gray iron, Cu-30% Zn and Al-5% Si alloy while temperature loss in the reverse order. Especially in case of reduced pressure process, the fluidity was increased apparently. Al-5% Si alloy showed the lowest temperature loss among the alloys. The increment of the apparent density of EPS pattern resulted in the fluidity decrease and temperature loss increase. The relation between fluidity and temperature loss of each alloy can be expressed by the following equation within the coating thickness limit of 0.5-1.5㎜. F^*={\frac{a}{T^*-b}}-c$ where, $F^*$ : fluidity in the Full mould, $T^*$ : temperature loss in the mould. a : parameter for full mould. b, c : constants.

  • PDF

Harvesting Performance of the Prototype Small Combine for Buckwheat and Adlay

  • Yoo, Soonam;Lee, Changhoon;Lee, Beom Seob;Yun, Young Tae
    • Journal of Biosystems Engineering
    • /
    • 제43권4호
    • /
    • pp.320-330
    • /
    • 2018
  • Purpose: The aim of this study was to investigate the harvesting performance of a prototype small combine for buckwheat and adlay. Methods: The prototype small combine was designed and constructed. Its ratio of grain loss, ratio of output components in the grain outlet, and field capacity for harvesting buckwheat and adlay were analyzed through field tests. Results: The prototype small combine required a working width of about 0.6 to 0.7 m to harvest buckwheat. The maximum travel speed was about 0.36 m/. The total ratio of grain loss was about 21.6%, which consisted of 8.8% at the header and 12.8% at the dust outlet. The grain and the material other than grain (MOG) ratios at the grain outlet were 94.1% and 5.9% respectively. In the case of adlay harvest, the maximum working width was about 1.2 m, that is, two rows. The range of maximum travel speed was about 0.45 to 0.46 m/s. When adlay was harvested in one row, the total ratio of grain loss ranged from 36.3 to 42.8% according to the cutting height. The cutting height of 30 cm resulted in a higher total ratio of grain loss than 60 cm and 90 cm. When the cutting height was 60 cm, there was no significant change in the total ratio of grain loss according to the number of working rows and the stage of the primary transmission shift. The total ratio of grain loss ranged from 35.2 to 37.7%. The grain and the MOG ratios at the grain outlet ranged from 93.1 to 95.8% and from 4.2 to 6.9%, respectively. No significant difference was observed in relation to cutting height, number of working rows, and the stage of the primary transmission shift. Conclusions: The prototype small combine for harvesting miscellaneous cereal crops showed good potential for the efficient harvesting of buckwheat and adlay. However, to improve the harvesting performance, there seems to be a need to develop new crop varieties suitable for machine-based harvesting and improve the transmissions, reels, separation/cleaning systems.

Analysis of a Geometrically Asymmetric Trapezoidal Fin with Variable Fin Base Thickness and Height

  • Kang, Hyung-Suk
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제16권3호
    • /
    • pp.83-88
    • /
    • 2008
  • A geometrically asymmetric trapezoidal fin is analyzed using the one-dimensional analytic method. Heat loss and thermal resistance are represented as a function of the fin base thickness, base height, fm shape factor, inside fluid convection characteristic number, convection characteristic numbers ratio, fm length and ambient convection characteristic number. The relationship between the fin base height and the shape factor for equal amounts of heat loss is presented. One of the results shows that the variations of the fm base thickness and the inside fluid convection characteristic number give no effect on the thermal resistance.

끝벽의 형상이 터빈 캐스케이드내 3차원 유동특성에 미치는 영향에 관한 전산해석 (Numerical Analysis on Effects of the Contoured Endwall on the Three-dimensional Flow Characteristics in a Turbine)

  • 김대유;정진택
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.284-289
    • /
    • 2002
  • The objective of this study is to document the secondary flow and the total pressure loss distribution in the contoured endwall installed linear turbine cascade passage and to propose an appropriate height of the contoured endwall which shows the best loss reduction among the simulated contoured endwall. In this study, three different contoured endwalls have been tested which have different height. This study was performed by numerical method and the result showed the contoured endwall which has the height of $5\%$ of the axial chord showed the best loss reduction rate.

  • PDF

경계층내 장애물이 터빈 캐스케이드내 3차원 난류유동에 미치는 영향에 관한 전산해석 (Numerical Analysis on Effects of the Boundary Layer Fence on the Three-dimensional Turbulent Flow in a Turbine Cascade)

  • 이상일;정진택
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.287-292
    • /
    • 2001
  • The objective of this study is to verify the secondary flow and the total pressure loss distribution in the boundary layer fence installed linear turbine cascade passage and to propose an appropriate height of the boundary layer fence which shows the best loss reduction among the simulated fences. In this study three different boundary layer fence was installed which have different height. This study was performed by numerical method and the result showed the boundary layer fence which has the height of one third of the inlet boundary layer thickness showed the best loss reduction rate.

  • PDF

사각 환형 핀에 대한 1차원과 2차원 해석의 열전달 비교 (Comparison of Heat Transfer Between 1-D and 2-D Analyses for a Rectangular Annular Fin)

  • 강형석
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1177-1181
    • /
    • 2009
  • Heat loss from a convective rectangular profile annular fin with variable inside fluid heat transfer coefficient and fin height is calculated by using both the one dimensional analytic method and two dimensional variables separation method. Heat loss from the two dimensional method and the relative error of heat loss between the one dimensional method and two dimensional method are presented as a function of the fin length, ambient convection characteristic number and fin height. One of the results shows that the relative error of heat loss between one dimensional method and two dimensional method is within 0.7% in the range of given parameters in this study.

  • PDF

중부한국의 자연생 소나무의 연 신장성장율에 영향을 미치는 토양요인들에 대한 다요인 분석 (An Analysis of the Relationship of Soil Factors to the Height Growth of Pinus densiflora within the Young Natural Stands in Central Korea)

  • 오계칠
    • Journal of Plant Biology
    • /
    • 제15권4호
    • /
    • pp.1-12
    • /
    • 1972
  • To study on the annual height growth of Pinus densiflora within natural pine stands in central Korea, twenty two pure closed Pinus densiflora stands were selected subjectively in the west-central region of Korea. In each stand twenty trees were chosen randomly. For each tree, abotu ten to fifteen measurements of internodal lengths were made from leader top to trunk base. A total of one hundred thirty four soil samples was collected. Each soil sample was bulked with three subsamples. The ranges of the growth measurements per stand, per tree and per observation were 14.9-35.4cm, 9.0cm-54.4cm and 2.4cm-69.0cm respectively. The total mean value was 23.5cm. The Student-Newman-Keul's tests for the multiple comparison among the mean values of the height growth per stand were very highly significant. The resutls of the analysis of variance of the height growth data for the selected fifteen stands among the twenty two stands indicate that sampling efficiency might be increased to 744% if measurement of the growth were made on fifteen trees per stand from twenty stands instead of twenty trees per stand from fifteen stands. The annual height growths of Pinus densiflora and Pinus koraiensis for the period from 1960 to 1968 were 21.74$\pm$5.29cm (10) and 20.56$\pm$5.59cm (10) respectively. The total means of easily-soluble phosphorus, total nitrogen, loss on ignition and pH for the soil samples were 2.8 ppm, 0.09%, 5.4% and 4.7 respectively. The ranges of those amounts were 18.7-1.7ppm, 0.17-0.05%, 11.6%-3.1%, 3.9-5.1 respectively. The relationship of the annual height growth of P. densiflora to soil was studied in terms of standard partial multiple regression. Among soil properties such as non-capillary pore space, capillary pore space, maximum field capacity, loss on ignition, soil reaction, total nitrogen and easily-soluble phosphoros investigated, the easily soluble phosphorus in one analysis and loss on ignition and soil reaction in the other analysis seem to have significant positive influence on the annual height growth.

  • PDF

터빈 캐스케이드 입구경계층 두께와 경계층 펜스 효과에 대한 실험적 연구 (Experimental Study on Effects of Inlet Boundary Layer Thickness and Boundary Layer Fence in a Turbine Cascade)

  • 전용민;정진택
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.853-858
    • /
    • 2000
  • The working fluid from the combustor to the turbine stage of a gas turbine makes various boundary layer thickness. Since the inlet boundary layer thickness is one of the important factors that affect the turbine efficiency. It is necessary to investigate secondary flow and loss with various boundary layer thickness conditions. In the present study, the effect of various inlet boundary layer thickness on secondary flow and loss and the proper height of the boundary layer fences for various boundary layer thickness were investigated. Measurements of secondary flow velocity and total pressure loss within and downstream of the passage were taken under 5 boundary layer thickness conditions, 16, 36, 52, 69, 110mm. It was found that total pressure loss and secondary flow areas were increased with increase of thickness but they were maintained almost at the same position. At the fellowing research about the boundary layer fences, 1/6, 1/3, 1/2 of each inlet boundary layer thickness and 12mm were used as the fence heights. As a result, it was observed that the proper height of the fences was generally constant since the passage vortex remained almost at the same position. Therefore once the geometry of a cascade is decided, the location of the Passage vortex and the proper fence height are appeared to be determined at the same time. When the inlet boundary layer thickness is relatively small, the loss caused by the proper fence becomes bigger than endwall loss so that it dominates secondary loss. In these cases the proper fence hight is decided not by the cascade geometry but by the inlet boundary layer thickness as previous investigations.

  • PDF

Two-body wear behavior of human enamel versus monolithic zirconia, lithium disilicate, ceramometal and composite resin

  • Habib, Syed Rashid;Alotaibi, Abdulaziz;Al Hazza, Nawaf;Allam, Yasser;AlGhazi, Mohammad
    • The Journal of Advanced Prosthodontics
    • /
    • 제11권1호
    • /
    • pp.23-31
    • /
    • 2019
  • PURPOSE. To investigate and compare the surface roughness (SR), weight and height of monolithic zirconia (MZ), ceramometal (CM), lithium disilicate glass ceramic (LD), composite resin (CR), and their antagonistic human teeth enamel. MATERIALS AND METHODS. 32 disc shaped specimens for the four test materials (n=8) and 32 premolars were prepared and randomly divided. SR, weight and height of the materials and the antagonist enamel were recorded before and after subjecting the specimens to 240,000 wear-cycles ($49N/0.8Hz/5^{\circ}C/50^{\circ}C$). SR, height, weight, and digital microscopic qualitative evaluation were measured. RESULTS. CM ($0.23+0.08{\mu}m$) and LD ($0.68+0.16{\mu}m$) exhibited the least and highest mean difference in the SR, respectively. ANOVA revealed significance (P=.001) between the materials for the SR. Paired T-Test showed significance (P<.05) for the pre- and post- SR for all the materials. For the antagonistic enamel, no significance (P=.987) was found between the groups. However, the pre- and post- SR values of all the enamel groups were significant (P<.05). Wear cycles had significant effect on enamel weight loss against all the materials (P<.05). CR and MZ showed the lowest and highest height loss of 0.14 mm and 0.46 mm, respectively. CONCLUSION. MZ and CM are more resistant to SR against the enamel than LD and CR. Enamel worn against test materials showed similar SR. Significant variations in SR values for the tested materials (MZ, LD, CM, and CR) against the enamel were found. Wear simulation significantly affected the enamel weight loss against all the materials, and enamel antagonist against MZ and CM showed more height loss.