• 제목/요약/키워드: Heel length

검색결과 97건 처리시간 0.02초

경주마의 발굽지표와 경주기록과의 관계 (Relationship between hoof parameters and racing time in racehorses)

  • 엄영호;김태완;양일석
    • 대한수의학회지
    • /
    • 제37권3호
    • /
    • pp.525-532
    • /
    • 1997
  • The hoof parameters - hoof angle, toe length, heel length, hoof width, hoof length, heel width, hoof circumference - of 1372 Thoroughbred racehorses in Seoul racecourse were measured. Each parameter was compared with the racing time. The parameters were as follows: fore hoof angle $50.1{\pm}0.09^{\circ}$, hind hoof angle $50.1{\pm}0.08^{\circ}$; fore toe fength $82.8{\pm}0.21mm$, hind toe length $88.8{\pm}0.23mm$; fore heel length $28.6{\pm}0.19mm$, hind heel length $24.5{\pm}0.19mm$; fore hoof width $130.9{\pm}0.30mm$, hind hoof width $125.7{\pm}0.28mm$; fore hoof length $133.3{\pm}0.22mm$, hind hoof length $28.1{\pm}0.22mm$; fore heel width $61.2{\pm}0.32mm$, hind heel width $67.9{\p}0.35mm$; fore hoof circumference $264.2{\pm}0.48mm$, hind hoof circumference $253.8{\pm}0.40mm$. Apart from the hoof angle, the hoof parameters increased in proportion to the body weight. The parameters of forelimbs affected the racing time more than those of hindlimbs. The correlation between hoof parameters and racing time was shown more in short-distance race (1000M) than in long-distance race(2200M). The parameters that had correlation with racing time were hoof width, hoof length, heel width of forelimbs and heel width of hindlimbs.

  • PDF

Effects of Different Shoe Heel Heights on the Kinematic Variables of the Lower Extremities during Walking on Slopes by healthy adult women

  • Yang, Yong-pil
    • 대한물리의학회지
    • /
    • 제14권3호
    • /
    • pp.21-27
    • /
    • 2019
  • PURPOSE: This study examined the changes in the kinematic variables during walking on a downhill ramp according to the shoe heel height. METHODS: The subjects were 10 adult women with no history of musculoskeletal disorders who agreed to participate in the study. Data were collected using a motion analysis system (VICON) consisting of six infrared cameras. The slope was 120 cm in width, 200 cm in length, and 15 in inclination. To confirm the change in gait parameters (stride length, gait speed) and lower extremity joint angle according to the heel heights of the shoes, flat, 5 cm, and 10 cm heel shoes were prepared and walked alternately. RESULTS: As a result, both the stride length and walking speed showed significant differences according to the heel height between flat and 10 cm (p<.05). In the sagittal plane, there was no significant difference in the hip joint and knee joint, but a significant difference was observed in all events in the ankle joint on all heel heights (p<.05). In particular, the heel strike and mid stance events showed significant differences among all height conditions (p<.05). No significant difference was observed in any of the joint angle changes in the frontal plane (p>.05). CONCLUSION: As the shoe heel height increased, the instability increased and efforts to secure the stability were made, leading to a shortened stride length, walking speed, and angle of the ankle joint.

뒷굽이 있는 케이슨 안벽에 작용하는 토압에 대한 연구 (Study on Earth Pressure Acting Against Caisson Structure with the Heel)

  • 유건선
    • 한국해안·해양공학회논문집
    • /
    • 제29권2호
    • /
    • pp.67-76
    • /
    • 2017
  • 본 연구에서는 케이슨 안벽의 뒷굽이 주동토압에 미치는 영향을 조사하였다. 한계해석법을 사용하여 뒷굽의 길이에 따라 벽면마찰력이 뒷굽 상부에서 발생하는 활동면의 경사각에 미치는 영향을 분석하였다. 분석결과 뒷굽의 길이가 짧을수록 내측 활동면의 경사각은 증가하나, 외측 활동면의 경사각은 일정하였다. 실제 케이슨 안벽에서 발생하는 파괴면에 작용하는 토압과 동일한 토압을 갖는 뒷굽 끝에서의 가상의 연직배면에 작용하는 토압에 대하여 뒷굽의 상대 길이-뒤채움 토사의 내부마찰각-벽면마찰각-가상의 연직배면에 작용하는 배면마찰각 등의 상관관계를 구하였다. 뒷굽이 짧을수록 케이슨 안벽에 작용하는 토압이 Rankine 토압보다는 작아지나 뒷굽의 길이를 고려하지 않은 Coulomb 토압보다는 항상 크게 나타났다.

이상적인 목발 길이와 목발 길이 추정법들간의 비교 (A Comparative Analysis between Several Crutch-Length-Estimation Techniques and Ideal Crutch Length)

  • 김민정;박윤수;이충휘;김현애
    • 한국전문물리치료학회지
    • /
    • 제3권1호
    • /
    • pp.24-31
    • /
    • 1996
  • The purpose of this study was to determine which of several crutch-fitting techniques best predicts ideal crutch length. Ideal crutch length is defined as the length of the crutch, including accessories, obtained during stance when the crutch tip is 6 inches (15.2 cm) lateral and 6 inches(15.2 cm) anterior to the fifth toe and the axillary pad is 2.5 inches(6.4 cm) below the axillary fold. Forty four volunteers were measured for crutches using each of the following methods:(1) 77% of actual height, (2) actual height minus 40.6 cm, (3) actual height minus 45.7 cm, (4) olecranon to opposite third finger tip, (5) olecranon to opposite fifth finger tip, (6) 77% of arm span, (7) arm span minus 40.6 cm, (8) anterior axillary fold to heel plus 5.1 cm, (9) anterior axillary fold to heel plus 10.2 cm, (10) ideal crutch length. Of the techniques studied, the two involving anterior axillary fold to heel were found to be good predictors: anterior axillary fold to heel plus 5.1 cm and anterior axillary fold to heel plus 10.2 cm. Finally, two additional length estimates were derived using linear regression analyses. These estimates provided the best overall predictors based on anterior axillary fold to heel and actual height.

  • PDF

여성 구두 굽 높이의 변화 연구 (Style changes of women's heel height in Vogue 1950~2014)

  • 안인숙
    • 복식문화연구
    • /
    • 제23권4호
    • /
    • pp.604-615
    • /
    • 2015
  • The objectives of this study were to investigate whether heel height changes in the U.S. market occur in a cyclical pattern and heel heights show greater within-year variability over time. Heel height data from U.S. Vogue's spring and fall editions were analyzed over the time period 1950~2014. A total of 1581 pieces of data were measured in millimeter units using Adobe Illustrator and standardized by dividing the height of the heel by the shoe length through the curved sole line. To analyze the cycle pattern of heel heights, the yearly averages were standardized by using three-year moving average technique to average out the irregular components of time series data and give a better indication of the long-term fluctuation of heel height. To identify the degree of within-year variability of heel height, the standard deviation of the average measurements for a year was calculated, and then decade averages were drawn from the yearly averaged standard deviation. One-way ANOVA was conducted to compare the within-year variability of data in heel height over the time period studied by decade. The results showed: First, there was a trend toward higher heels from the early 1950s to 2011. Second, four cyclical movements of heel height were observed from 1950 to 2007, and heel heights gradually decreased after 2008. Third, the within-year variability significantly increased over time, especially after the 1980s.

뒷굽이 짧은 캔틸레버 옹벽의 안정성에 관한 연구 (A Study on the Stability of Cantilever Retaining Wall with a Short Heel)

  • 유건선
    • 한국지반공학회논문집
    • /
    • 제34권10호
    • /
    • pp.17-28
    • /
    • 2018
  • 캔틸레버 옹벽의 안정성 평가에서 중요한 변수는 옹벽에 작용하는 주동토압과 옹벽과 함께 움직이는 뒷굽 상부의 뒤채움토사의 무게이다. 캔틸레버 옹벽의 뒷굽 길이가 충분히 길면, 뒷굽 끝단에서의 연직면에 Rankine 토압이 작용한다고 가정하여 옹벽의 안정성을 평가해도 이론적으로 문제가 되지 않는다. 그러나 뒷굽이 짧은 캔틸레버 옹벽에 대하여 이와 같은 방법을 적용하는 것은 이론적으로 옳지 않으며, 주동토압을 실제보다 크게 산정하므로써 비경제적인 설계를 초래한다. 본 연구에서는 한계해석방법을 사용하여 캔틸레버 옹벽에 토압이 작용하는 메카니즘을 조사하고 이를 토대로 주동토압의 크기 및 합력의 위치, 뒤채움토사의 무게를 산정하였으며, 산정결과를 기존의 방법과 비교하였다. 뒷굽길이가 짧을 경우, 옹벽에 대한 안정성은 한계해석방법에 비해 기존의 Mohr원 방법은 최대 3.7%, Teng 방법은 최대 32% 크게 산정되었다.

뒷굽 길이가 짧은 캔틸레버 옹벽의 Coulomb 토압 산정에 대한 영향 인자 분석 (Analysis of Influencing Factors for Calculation of the Coulomb Earth Pressure of Cantilever Retaining Wall with a Short Heel)

  • 유건선
    • 한국지반공학회논문집
    • /
    • 제33권11호
    • /
    • pp.59-72
    • /
    • 2017
  • 본 연구에서는 사질토 뒷채움재의 캔틸레버 옹벽에서 뒷굽 끝단 연직면에 작용하는 주동토압을 산정하는 방법을 제안하였다. 캔틸레버 옹벽에서 뒷굽길이에 따른 전단 영역의 변화는 벽체의 벽마찰력, 뒷채움 경사에 따라 뒷굽 끝단 연직면에 작용하는 주동토압에 영향을 준다. 뒷굽길이에 따라 변하는 파괴면각도를 가정하여 토압을 산정하는 한계평형법은 적용하기에 매우 복잡하므로 본 연구에서는 한계해석법을 사용하여 토압을 구하였다. 한계해석법으로 뒷굽길이에 따라 실제 파괴면각도가 고려된 토압을 정확히 산정하고, 이로부터 뒷굽 끝단 연직면에 작용하는 수평토압과 연직토압을 분석하였다. 본 연구결과에 의하면, 뒷굽길이가 짧아짐에 따라 내측 파괴면 경사각은 이론식보다 증가한 반면에 외측 파괴면 경사각은 영향을 받지 않았다. 뒷굽 끝단의 연직면에 작용하는 배면마찰각은 지표면 경사각과 벽면마찰각 사이의 값을 나타내었으며, 주동토압 또한 감소하였다. 최종적으로 상대적인 뒷굽길이와 뒷굽 끝단의 연직면에 작용하는 마찰각(연직토압/수평토압의 비)의 상관관계를 사용함으로써 Coulomb 토압을 간편하게 산정할 수 있도록 하였다.

경제와 여성 구두 굽 높이 변화의 관계 - 미국 Vogue 패션편집란에 실린 펌프스타일을 중심으로 - (The Relationship between the State of the Economy and High Heel Height - Based on Pump Style Shoes on Fashion Editorial Section of US Vogue -)

  • 안인숙
    • 복식
    • /
    • 제65권7호
    • /
    • pp.86-100
    • /
    • 2015
  • This study is to investigate the relationships between heel height and macro-economic factors - recession and unemployment; and to analyze the time lags reflecting economic factors on heel height index using U.S. data. The life-history evolution theory was applied to propose the relationships studied. The data for the heel height measurements of women's shoes - pump style only - were obtained from US Vogue fashion editorial sections on spring and fall editions from 1950 to 2014. I divided the heel height by the length of the shoes in order to standardize the data. Total of 1581 samples were used, and heel height data were aggregated to create a yearly average. To explore the relationships between macro-economic factors and heel height, this study used OLS of Stata 13 program. The main findings show that unemployment rates influenced heel height for three years in a positive direction. Furthermore, the effects of unemployment rate from two years ago on the current heel height were very close to being on a significant level.

Classification of Elderly Men's Sole from the 2D Scanning Method

  • Kim, Nam Soon;Do, Wol Hee
    • 한국의류산업학회지
    • /
    • 제15권3호
    • /
    • pp.414-422
    • /
    • 2013
  • This study identifies the foot shapes of elderly men by classifying foot types according to the shapes of sole of foot and analyzing individual characteristics. The subjects were 269 elderly men over 60 years of age. Their right feet were measured indirectly with a 2D scanner. The anthropometric measuring items consisted of 38 items that were estimated on the right foot of each subject. The 2D scan data were analyzed by various statistical methods such as factor analysis, ANOVA and cluster analysis using the statistical program SPSS 19.0. A total of 8 factors were extracted through a factor analysis and these factors represent 77.83% of total variance. The 8 factors were: ball and lateral foot protrusion, ball gradient, medial foot protrusion, anterior and posterior foot length ratio, lateral ball length, heel size, toes breadth, and foot length, that explained 77.83% of the total variance. A total of 4 clusters (as their sole type) were categorized using 8 factor scores by cluster analysis. Type 1 was classified as H-type(toes width, foot width, heel width uniform and medial malleolus and lateral malleolus almost no protrusion). Type 2 was classified as V-type(foot width and toes width, wide and heel width narrow). Type 3 was classified as A-type(foot width and heel width, wide but toes width narrow, protruded inside). Type 4 was classified as D-type(protruded outside).

Relationship between the Impact Peak Force and Lower Extremity Kinematics during Treadmill Running

  • Ryu, Ji-Seon;Park, Sang-Kyoon
    • 한국운동역학회지
    • /
    • 제28권3호
    • /
    • pp.159-164
    • /
    • 2018
  • Objective: The aims of this study were to determine the impact peak force and kinematic variables in running speed and investigate the relationship between them. Method: Thirty-nine male heel strike runners ($mean\;age=21.7{\pm}1.6y$, $mean\;mass=72.5{\pm}8.7kg$, $mean\;height=176.6{\pm}6.1cm$) were recruited in this investigation. The impact peak forces during treadmill running were assessed, and the kinematic variables were computed using three-dimensional data collected using eight infrared cameras (Oqus 300, Qualisys, Sweden). One-way analysis of variance ANOVAwas used to investigate the influence of the running speed on the parameters, and Pearson's partial correlation was used to investigate the relationship between the impact peak force and kinematic variables. Results: The running speed affected the impact peak force, stride length, stride frequency, and kinematic variables during the stride phase and the foot angle at heel contact; however, it did not affect the ankle and knee joint angles in the sagittal plane at heel contact. No significant correlation was noted between the impact peak force and kinematic variables in constantrunning speed. Conclusion: Increasing ankle and knee joint angles at heel contact may not be related to the mechanism behind reducing the impact peak force during treadmill running at constant speed.