• Title/Summary/Keyword: Heel Angle

Search Result 145, Processing Time 0.026 seconds

The Calculation and Design Method of Active Earth Pressure with Type of Gravity Structures (중력식 구조물의 형태에 따른 주동토압 산정과 설계법 제안)

  • Kim, Byung-Il;Jeong, Young-Jin;Kim, Do-Hyung;Lee, Chung-Ho;Han, Sang-Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.4
    • /
    • pp.47-63
    • /
    • 2014
  • In this study theories of earth pressure such as Rankine, Coulomb, Trial Wedge, Improved Trial Wedge, used in the design for onshore and offshore structures, are analyzed and the characteristics of loaded pressure to virtual back (wall, plane) and wall surface in accordance with the structure type are suggested. To investigate characteristics of earth pressure, gravity retaining wall with inclined angle and cantilever wall with inclined ground are movilized for onshore structures and caisson and block type quay wall are mobilized for offshore structures. Based on various theories, the earth pressure applied angle(wall friction angle) and sliding angle toward the wall, which is influenced by the heel length, are calculated and compared. In the case of long heel, the pressure by Rankine's method in virtual plane and the mobilized angle are most reasonably estimated by the ground slope, and in the case of short heel, the pressure by Coulomb's method and the mobilized angle by the angle of wall friction. In addition, the sliding angle toward the wall estimated by the improved trial wedge method is large than the value of Rankine's method. Finally, in this study the reasonable method for calculating the pressure and the mobilized angle that can be applied to the routine design of port structures is proposed. The proposed method can decide the earth pressure with length of a heel and a self weight of retaining wall according to sliding angle toward the wall.

Kinematical Analysis of Heel-Brake Stop in Inline Skate (인라인 스케이트(Inline Skate) 힐 브레이크(Heel-Brake) 정지에 관한 운동학적 분석)

  • Han, Jae-Hee;Lim, Yong-Kyu
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.2
    • /
    • pp.11-20
    • /
    • 2005
  • This study has a purpose on contributing to apprehend safe and right way to stop to the inline skate beginners and to the instructors who teaches line skating on the basis for the result of the kinematical analysis on Heel brake stop movement of the inline skate, focusing on the displacement on COG, angle displacement of ankle joint, angle displacement of knee joint, angle displacement of hip joint, using a 3D image method by DLT. To achieve this goal, we analysed the kinematical factor of the 3 well-trained inline skating instructors and obtained the following results. 1. During the movement of heel-brake stop, when strong power was given to a stable and balanced stop and the lower limbs, if the physical centroid is lowered the stability increases, and if it is placed high from the base surface, as the stability decreases compared to the case of low physical centroid, we should make a stop by placing a physical centroid in the base surface and lowering the hight of physical centroid. 2. To make a stable and balanced stop and to provide a strong power to the lower limbs, it is advisable to make a stop by decreasing an angle displacement of ankle joint during a "down" movement. In case of the left ankle joint, in all events and phases the dorsiflexion angle showed a decrease. Nevertheless, in the case of the right ankle joint, the dorsiflexion angle shows an increase after a slight decrease. The dorsiflexion angle displacement of ankle joint can be diminished because of the brake pad of the rear axis frame of the right side inline skate by raising a toe, but cannot be more decreased if certain degree of an angle is made by a brake pad touching a ground surface. To provide a power to a brake pad, it is recommended to place a power by lowering a posture making the dorsiflexion angle of the left ankle joint relatively smaller than that of the right ankle. 3. To make a stable and balanced stop and to add a power to a brake pad, the power must be given to the lower limbs in lowering the hight of physical centroid. For this, it is recommended to make a down movement by decreasing the flexion angle of a knee joint and it is necessary to make a down movement by a regular decrease of the angle displacement of knee joint rather than a swift down movement in every event and phase. 4. The right angle displacement of hip joint is made by lowering vertically the hight of physical centroid as leaning slightly forward. If too narrow angle displacement of hip joint is made by leaning forward too much, the balance is lost during the stop by placing the center in front. To make a stable and balance stop and to place a strong power to the lower limbs, it is recommendable to make a narrow angle by lower the hip joint angle. However, excessive leaning of the upper body to make the angle too narrow, can cause an instable stop and loss of physical centroid. After this study, it is considered to assist the kinematical understanding during the heel brake stop movement of the inline skate, and, to present basic data in learning a method of stable and balanced stop for the inline skating beginners or for the inline skate instructors in the present situation of the complete absence of the study in inline skating.

Change in Turning Ability According to the Side Fin Angle of a Ship Based on a Mathematical Model

  • Lee, WangGook;Kim, Sang-Hyun;Jung, DooJin;Kwon, Sooyeon
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.91-100
    • /
    • 2022
  • In general, the effect of roll motion is not considered in the study on maneuverability in calm water. However, for high-speed twin-screw ships such as the DTMB 5415, the coupling effects of roll and other motions should be considered. Therefore, in this study, the estimation of maneuverability using a 4-degree-of-freedom (DOF; surge, sway, roll, yaw) maneuvering mathematical group (MMG) model was conducted for the DTMB 5415, to improve the estimation accuracy of its maneuverability. Furthermore, a study on the change in turning performance according to the fin angle was conducted. To accurately calculate the lift and drag forces generated by the fins, it is necessary to consider the three-dimensional shape of the wing, submerged depth, and effect of interference with the hull. First, a maneuvering simulation model was developed based on the 4-DOF MMG mathematical model, and the lift force and moment generated by the side fins were considered as external force terms. By employing the CFD model, the lift and drag forces generated from the side fins during ship operation were calculated, and the results were adopted as the external force terms of the 4-DOF MMG mathematical model. A 35° turning simulation was conducted by altering the ship's speed and the angle of the side fins. Accordingly, it was confirmed that the MMG simulation model constructed with the lift force of the fins calculated through CFD can sufficiently estimate maneuverability. It was confirmed that the heel angle changes according to the fin angle during steady turning, and the turning performance changes accordingly. In addition, it was verified that the turning performance could be improved by increasing the heel angle in the outward turning direction using the side fin, and that the sway speed of the ship during turning can affect the turning performance. Hence, it is considered necessary to study the effect of the sway speed on the turning performance of a ship during turning.

Activation of the Triceps Surae During Heel Raising Depend on the Knee Joint Flexion Angles (무릎관절 굽힘 각도에 따른 뒤꿈치 들기 동안 종아리 세갈래근의 활성도)

  • Kwon, Yu-Jeong;Song, Min-Young
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.8 no.4
    • /
    • pp.497-503
    • /
    • 2013
  • PURPOSE: The purpose of this study was to investigate the change of triceps surae activation during heel raise test in standing among knee flexion angles($0^{\circ}C$, $30^{\circ}C$, $45^{\circ}C$, $60^{\circ}C$). METHODS: Twenty healthy individuals performed unilateral plantarflexion in standing with $0^{\circ}C$, $30^{\circ}C$, $45^{\circ}C$, $60^{\circ}C$ knee flexion. Activity of medial gastrocnemius(MG), lateral gastrocnemius(LG), soleus(Sol) was recorded with surface electromyography(EMG). RESULT: The muscle activations induced the four different positions were compared and results showed that was significant difference MG and LG while the angle increase from $0^{\circ}C$ to $30^{\circ}C$, $45^{\circ}C$, $60^{\circ}C$ but Sol did not show significant differences in every angle. CONCLUSION: This study suggest that $30^{\circ}C$ knee flexion is required to induce a significant mechanical disadvantage of gastrocnemius.

Accessory Talar Facet Impingement due to Accessory Anterolateral Talar Facet Misdiagnosed as Sinus Tarsi Syndrome (족근동 증후군으로 오인된 Accessory Anterolateral Talar Facet에 의한 거종관절 충돌)

  • Park, Jae Woo;Park, Chul Hyun
    • Journal of Korean Foot and Ankle Society
    • /
    • v.22 no.1
    • /
    • pp.16-20
    • /
    • 2018
  • Purpose: To evaluate the clinical and radiographic results of surgical treatment for patients with sinus tarsi pain due to accessory talar facet impingement. Materials and Methods: Between July 2013 and July 2015, nine patients who underwent surgery for the accessory talar facet impingement were reviewed. The mean follow-up period was 18.6 months (12~36 months), and the mean age was 33.1 years (19~60 years). Previous trauma history, duration of symptom, and types of surgery were analyzed. The clinical results were evaluated using the American Orthopaedic Foot and Ankle Society (AOFAS) ankle-hindfoot score and visual analogue scale (VAS). Radiographic results were assessed using Meary's angle, calcaneal pitch angle, heel alignment angle, and heel alignment ratio. Results: All patients had evident trauma history prior to the initial symptom. The mean duration of symptoms was 25.6 months (6~120 months). Four patients received only accessory anterolateral talar facet (AALTF) excision, and four patients received medial sliding calcaneal osteotomy (MSCO). One patient underwent both AALTF excision and MSCO. The AOFAS ankle-hindfoot score was significantly improved from 73 (62~77) preoperatively to 93 (67~100) postoperatively. The VAS score was decreased from 6 (5~7) preoperatively to 1 (0~5) postoperatively. The Meary's angle and calcaneal pitch angle showed no significant difference after surgery. The heel alignment angle and ratio increased from $-3.6^{\circ}$ ($-10^{\circ}{\sim}5^{\circ}$) and 0.22 (-0.15~0.6) preoperatively to $2.8^{\circ}$ ($1^{\circ}{\sim}5^{\circ}$) and 0.42 (0.3~0.6) postoperatively, respectively. Conclusion: If there is persistent sinus tarsi pain in patients with hindfoot valgus, accessory talar facet impingement caused by AALTF could be considered as a cause of chronic sinus tarsi pain.

Effects of 12-week Wearing of the Unstable Shoes on the Standing Posture and Gait Mechanics (12주간의 불안정성 신발 착용이 직립 자세 및 보행역학에 미치는 영향)

  • Park, Ki-Ran;An, Song-Yi;Lee, Ki-Kwang
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.3
    • /
    • pp.165-172
    • /
    • 2006
  • The purpose of this study was to determine effects of 12-week wearing of unstable shoe on the standing posture and gait mechanics. Nine healthy men were asked to wear the unstable shoes for 12-week and walk for 30 minute everyday. Their standing posture and gait mechanics were measured before and after treatment. Standing posture was measured for each side(anterior, posterior, lateral) for standing position. And gait analysis was measured joint angle of a right lower limb between first right heel contact and second right heel contact. Kinematic data were collected using video camera at 30 frame per seconds. Statistical analysis was paired t-test(p<.05) to compare before training with after that. A head tilt angle was significantly decreased for posterior side(p<.05). The angle of between center of line and surface was significantly decreased at midstance and take off during walking(p<.05). Ankle dorsiflexion significantly increased at heel contact2(p<.05) and ankle plantarflexion significantly increased at midstance and midswing(p<.05). The increase of ankle dorsiflexion showed that our results consisted with previous study. In conclusion, there was not large significant difference in static standing posture but joint angle of lower limb represented many changes with increasing of ankle motion during walking. These were of benefit to body by increasing leg muscle activity but it was necessary for man having a ankle problem to consider. Further studies concerning optimum outsole angle of unstable shoes are necessary.

Restoring Characteristics of Windy Leisure Boat Associated to Sailing Angle of Attack and Effet of Side Force (풍력 레저선박의 돛 받음각과 횡력에 대한 복원력 특성)

  • Kang, Gyung Ju;Moon, Byung Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.13-18
    • /
    • 2015
  • Characteristics of restoring force for the wind-powered leisure boat was investigated using mathematical formulation and commercial computational method such as the ANSYS Workbench CFX-Mesh. The objective is to find the restoring moment and heel moment while boat is sailing in windy power. Conditions for angle of attack were given from $5^{\circ}$ to $90^{\circ}$. It is known that side force is larger in terms of angle of attack is higher, however critical angle is suggested to limit before over of $60^{\circ}$ for safe navigation for boat in wind. Natural results are found that stronger heel moment is observed when sail is used than no sail, and higher angle of attack is induced stronger heel moment.

The Effect of Shoe Heel Types and Gait Speeds on Knee Joint Angle in Healthy Young Women - A Preliminary Study

  • Chhoeum, Vantha;Wang, Changwon;Jang, Seungwan;Min, Se Dong;Kim, Young;Choi, Min-Hyung
    • Journal of Internet Computing and Services
    • /
    • v.21 no.6
    • /
    • pp.41-50
    • /
    • 2020
  • The consequences of wearing high heels can be different according to the heel height, gait speed, shoe design, heel base area, and shoe size. This study aimed to focus on the knee extension and flexion range of motion (ROM) during gait, which were challenged by wearing five different shoe heel types and two different self-selected gait speeds (comfortable and fast) as experimental conditions. Measurement standards of knee extension and flexion ROM were individually calibrated at the time of heel strike, mid-stance, toe-off, and stance phase based on the 2-minute video recordings of each gait condition. Seven healthy young women (20.7 ± 0.8 years) participated and they were asked to walk on a treadmill wearing the five given shoes at a self-selected comfortable speed (average of 2.4 ± 0.3 km/h) and a fast speed (average of 5.1 ± 0.2 km/h) in a random order. All of the shoes were in size 23.5 cm. Three of the given shoes were 9.0 cm in height, the other two were flat shoes and sneakers. A motion capture software (Kinovea 0.8.27) was used to measure the kinematic data; changes in the knee angles during each gait. During fast speed gait, the knee extension angles at heel strike and mid-stance were significantly decreased in all of the 3 high heels (p<0.05). The results revealed that fast gait speed causes knee flexion angle to significantly increase at toe-off in all five types of shoes. However, there was a significant difference in both the knee flexion and extension angles when the gait in stiletto heels and flat shoes were compared in fast gait condition (p<0.05). This showed that walking fast in high heels leads to abnormal knee ROM and thus can cause damages to the knee joints. The findings in this preliminary study can be a basis for future studies on the kinematic changes in the lower extremity during gait and for the analysis of causes and preventive methods for musculoskeletal injuries related to wearing high heels.

The Anode Heel Effect caused by changing the Angle of X-Ray Tube (X-선관 각도 변경에 따른 Anode Heel Effect)

  • Shin, Seong-gyu;Lee, Hyo-Yeong
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.6
    • /
    • pp.435-442
    • /
    • 2016
  • This study was an investigation of the anode heel effect caused by changing the angle of the x-ray tube. We established the following conditions for experimental measurements: 70 kV, 30 mAs, focus-detector distance of 100cm, and a collimator setting of $35{\times}43cm^2$. The measurement points were set up at the center of the collimator and extended to each side in intervals of 3.5cm, with points A1, A2, A3, A4, A5, A6 on the anode side and points C1, C2, C3, C4, C5, C6 on the cathode side. We measured the entrance surface dose from point A6 to point C6 with each point perpendicular to an x-ray tube. And we did the same when measuring different angles of the x-ray tube from 15 to 30 degrees for every point on the anode and cathode sides. Using perpendicular x-ray tube, we found that the entrance surface dose of the A5 point was three times higher than that of the C5 point. Thus, we conclude that if the anode side is placed near highly radiosensitive organs, then there will be less radiation exposure when using a perpendicular x-ray tube. When imaging using x-ray tube angles, an angle to the cathode side can reduce the gap of the entrance surface dose on both the anode and cathode sides. When imaging areas where there are differences in thickness between the upper and lower sides, the angle to the cathode side that is closer to the thicker area can reduce the gap of the entrance surface dose and capture a higher quality image.

The Height and Volume of Medial Longitudinal Arch in Normal and Painful Feet (정상인과 통증이 있는 족부의 내측 종아치의 높이와 부피)

  • Lee, Woo-Chun;Moon, Jeong-Seok
    • Journal of Korean Foot and Ankle Society
    • /
    • v.11 no.1
    • /
    • pp.8-12
    • /
    • 2007
  • Purpose: The purpose of this study was to investigate the differences in simple radiographic parameters and results of 3-D scan among normal and patient groups. Materials and Methods: Seventy subjects in each group were studied. Control group consisted of subjects without plantar foot pain (normal group), and two patient groups were one with plantar forefoot pain (metatarsalgia group), the other with plantar heel pain (heel pain group). Simple radiographic parameters were obtained and 3-D scan was done with foot scanner (Nexscan, K&I, Korea) and The height and volumn of the space under the medial longitudinal arch was analyzed (Enfoot, K&I, Korea). These parameters were compared and correlation between radiological parameters and results of the 3-D scan were studied. Results: The results of all parameters istributed normally. There was no signigicant differences among the groups in radiological parameters (talo-first metatarsal angle, calcaneal pitch angle and height of the talar head in standing lateral radiograph) and arch height and arch volumn on 3-D scan. There were statistically significant correlations between radiological and 3-D scan results. Conclusion: This study revealed that there is no significant differences in medial longitudinal arch height and volumn among normal and different patient groups and there are variety of arch height in patients with similar symptoms.

  • PDF