• Title/Summary/Keyword: Heckman-Opdam theory

Search Result 4, Processing Time 0.015 seconds

THE POSITIVITY OF THE HYPERGEOMETRIC TRANSLATION OPERATORS ASSOCIATED TO THE CHEREDNIK OPERATORS AND THE HECKMAN-OPDAM THEORY ATTACHED TO THE ROOT SYSTEMS OF TYPE B2 AND C2

  • Trimeche, Khalifa
    • Korean Journal of Mathematics
    • /
    • v.22 no.1
    • /
    • pp.1-28
    • /
    • 2014
  • We consider the hypergeometric translation operator associated to the Cherednik operators and the Heckman-Opdam theory attached to the root system of type $B_2$. We prove in this paper that these operators are positivity preserving and allow positive integral representations. In particular we deduce that the product formulas of the Opdam-Cherednik and the Heckman-Opdam kernels are positive integral transforms, and we obtain best estimates of these kernels. The method used to obtain the previous results shows that these results are also true in the case of the root system of type $C_2$.

THE HARMONIC ANALYSIS ASSOCIATED TO THE HECKMAN-OPDAM'S THEORY AND ITS APPLICATION TO A ROOT SYSTEM OF TYPE BCd

  • Trimeche, Khalifa
    • Korean Journal of Mathematics
    • /
    • v.27 no.1
    • /
    • pp.221-267
    • /
    • 2019
  • In the five first sections of this paper we define and study the hypergeometric transmutation operators $V^W_k$ and $^tV^W_k$ called also the trigonometric Dunkl intertwining operator and its dual corresponding to the Heckman-Opdam's theory on ${\mathbb{R}}^d$. By using these operators we define the hypergeometric translation operator ${\mathcal{T}}^W_x$, $x{\in}{\mathbb{R}}^d$, and its dual $^t{\mathcal{T}}^W_x$, $x{\in}{\mathbb{R}}^d$, we express them in terms of the hypergeometric Fourier transform ${\mathcal{H}}^W$, we give their properties and we deduce simple proofs of the Plancherel formula and the Plancherel theorem for the transform ${\mathcal{H}}^W$. We study also the hypergeometric convolution product on W-invariant $L^p_{\mathcal{A}k}$-spaces, and we obtain some interesting results. In the sixth section we consider a some root system of type $BC_d$ (see [17]) of whom the corresponding hypergeometric translation operator is a positive integral operator. By using this positivity we improve the results of the previous sections and we prove others more general results.

GENERALIZED WAVELETS AND THE GENERALIZED WAVELET TRANSFORM ON ℝd FOR THE HECKMAN-OPDAM THEORY

  • Hassini, Amina;Maalaoui, Rayaane;Trimeche, Khalifa
    • Korean Journal of Mathematics
    • /
    • v.24 no.2
    • /
    • pp.235-271
    • /
    • 2016
  • By using the Heckman-Opdam theory on ${\mathbb{R}}^d$ given in [20], we define and study in this paper, the generalized wavelets on ${\mathbb{R}}^d$ and the generalized wavelet transform on ${\mathbb{R}}^d$, and we establish their properties. Next, we prove for the generalized wavelet transform Plancherel and inversion formulas.

ABSOLUTE CONTINUITY OF THE REPRESENTING MEASURES OF THE HYPERGEOMETRIC TRANSLATION OPERATORS ATTACHED TO THE ROOT SYSTEM OF TYPE B2 AND C2

  • Trimeche, Khalifa
    • Korean Journal of Mathematics
    • /
    • v.22 no.4
    • /
    • pp.711-723
    • /
    • 2014
  • We prove in this paper the absolute continuity of the representing measures of the hypergeometric translation operators $\mathcal{T}_x$ and $\mathcal{T}_x^W$ associated respectively to the Cherednik operators and the Heckman-Opdam theory attached to the root system of type $B_2$ and $C_2$ which are studied in [9].