• Title/Summary/Keyword: Hec-Ras

Search Result 342, Processing Time 0.017 seconds

Method for Flood Runoff Analysis of Main Channel Connected with Interior Floodplain : I. Application for Analysis of Inundation Area in Interior Floodplain (제내지와 하도를 연계한 하천유역의 홍수유출해석: I. 제내지 침수해석에의 적용)

  • Jang, Su Hyung;Yoon, Jae Young;Yoon, Yong Nam;Kim, Won Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1B
    • /
    • pp.79-88
    • /
    • 2006
  • In this study, a methodology is developed for flood runoff analysis considering the interaction between interior floodplain and channel. Riparian lowland is modeled as storage areas by HEC-RAS and is connected with main channel through gravity drainage structure and pumping stations. As a result, we were able to compute the difference between runoff into the interior floodplain and delayed runoff to main channel from interior floodplain. This allowed us to compute the storage change in the interior floodplain and corresponding inundation areas. Furthermore, the levee is modeled as a lateral structure and the flood from the main channel to interior floodplain is modeled by installing a weir on top of it. In addition, levee breach is also modeled so that flooding from main channel to interior floodplain can be considered. Computed flooding depth in the storage areas are compared with elevation to identify the inundated areas and flood maps can then be produced for a desired time or for the extent of flooding given a flooding depth. Output from this modeling effort can provide many useful information for flood planning such as flow depth in main channel, flooding depth and area in interior floodplain. The method was applied to Sapgyo river basin and the comparison with observed flood events showed that it can reproduce the observation fairly well, hence proving the utility of the method.

Evaluation of applicability of linkage modeling using PHABSIM and SWAT (PHABSIM과 SWAT을 이용한 연계모델링 적용성 평가)

  • Kim, Yongwon;Byeon, Sangdon;Park, Jinseok;Woo, Soyoung;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.10
    • /
    • pp.819-833
    • /
    • 2021
  • This study is to evaluate applicability of linkage modeling using PHABSIM (Physical Habitat Simulation System) and SWAT (Soil and Water Assessment Tool) and to estimate ecological flow for target fishes of Andong downstream (4,565.7 km2). The SWAT was established considering 2 multi purpose dam (ADD, IHD) and 1 streamflow gauging station (GD). The SWAT was calibrated and validated with 9 years (2012 ~ 2020) data of 1 stream (GD) and 2 multi-purpose dam (ADD, IHD). For streamflow and dam inflows (GD, ADD and IHD), R2, NSE and RMSE were 0.52 ~ 0.74, 0.48 ~ 0.71, and 0.92 ~ 2.51 mm/day respectively. As a result of flow duration analysis for 9 years (2012 ~ 2020) using calibrated streamflow, the average Q185 and Q275 were 36.5 m3/sec (-1.4%) and 23.8 m3/sec (0%) respectively compared with the observed flow duration and were applied to flow boundary condition of PHABSIM. The target stream was selected as the 410 m section where GD is located, and stream cross-section and hydraulic factors were constructed based on Nakdong River Basic Plan Report and HEC-RAS. The dominant species of the target stream was Zacco platypus and the sub-dominant species was Puntungia herzi Herzenstein, and the HSI (Habitat Suitability Index) of target species was collected through references research. As the result of PHABSIM water level and velocity simulation, error of Q185 and Q275 were analyzed -0.12 m, +0.00 m and +0.06 m/s, +0.09 m/s respectively. The average WUA (Weighted Usable Area) and ecological flow of Zacco platypus and Puntungia herzi Herzenstein were evaluated 76,817.0 m2/1000m, 20.0 m3/sec and 46,628.6 m2/1000m, 9.0 m3/sec. This results indicated Zacco platypus is more adaptable to target stream than Puntungia herzi Herzenstein.