• 제목/요약/키워드: Heavy-weight floor Impact Noise

검색결과 121건 처리시간 0.028초

바닥충격음 측정 및 차음 평가의 방향 (Improvement of Floor Impact Noise Measurement and Method for Rating Floor Impact Noise Isolation Performance)

  • 정정호;정영;서상호;송희수;전진용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.269-274
    • /
    • 2004
  • The aims of this study were to Investigate the floor impact noise isolation performance of floating floor with isolation materials and propose the improvement direction of floor impact noise measurement method and evaluation classes using impact ball. Reduction of light-weight impact sound pressure level can be achieved by the finishing materials, such as vinyl finishing material and wooden flooring with isolation materials. Floor impact noise Isolation material which satisfy the properties of the floor impact noise isolation materials cause resonance in the low frequency band and worsen heavy-weight impact sound pressure level. Heavy-weight impact sound level can be reduced by using noise reduction flooring, ceiling and increase of slab thickness. Strong impact force in low frequency bang below 63Hz of bang machine is not similar to human impact source and causes some problem in evaluating heavy-weight impact noise but heavy-weight impact noise measurement and evolution using impact ball which is very similar to human impact is more reliable than bang machine. Correction value on the background noise and sensitivity of residents should be considered on the floor impact noise evaluation classes.

  • PDF

다층 공동주택의 중량충격원 전파 특성 해석 (Heavy-weight floor impact noise propagation in a multi-story building)

  • 이신엽;황덕영;박준홍
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.225-226
    • /
    • 2014
  • In multi-story buildings, heavy-weight floor impact noise propagates through multiple layers. In order to evaluate the influence of structural vibration and propagation, the actual twelve-story building was excited by an impact ball. Sound and vibration responses of each floor was measured using accelerometers and a microphone. Vibration characteristics and its transfer paths were different depending on the excitation floor locations due to differences in the structural characteristics. From the measurement result, transfer characteristics were quantified by statistical energy analysis. It was confirmed that the heavy-weight floor impact noise influence not only adjacent floor. The impact noise transferred and affected multiple layers.

  • PDF

중량충격음의 주관적 반응에 대한 공간음향요소의 영향 (Effect of spatial factors on subjective responses to heavy-weight floor impact noise)

  • 이평직;김재호;유승엽;사토 신이치;전진용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.960-963
    • /
    • 2007
  • The effect of spatial factors on subjective responses to heavy-weight floor impact noise was investigated. Heavy-weight impact noises were generated and recorded in several apartments and a testing building using impact ball and binaural microphone to measure IACC of the noises. Just noticeable differences (JNDs) of IACC and SPL of heavy-weight impact noise were also investigated. Auditory experiments were conducted using method of limit. It was found that the JNDs of IACC and SPL were 0.12 and 1.5dB, respectively. Contribution of IACC and SPL to annoyance of heavy-weight floor impact noise is being further investigated.

  • PDF

감쇠재 사용에 따른 중량충격음의 소음 및 진동특성 (Noise and Vibration Characteristics of Heavy-weight floor impact by Using Damping Materials)

  • 전진용;정영;송희수;김민배;이영제
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.97-102
    • /
    • 2004
  • The Characteristics of noise and vibration by heavy-weight floor impact sound was studied. Resonance frequency increased a little in structures that use damping material in living room and bedroom, and acceleration waves length that respond became short, and displayed aspect that oscillation level decreases. Result that measure sound pressure level, structure that compare and applies damping materials with structure that apply the resilient materials from 63Hz lower part that impact energy is concentrated in energy spectrum of heavy-weight floor impact sound displayed result that sound pressure, level decreases remarkably. Therefore, according to use of damping materials, confirmed reduction effect of heavy-weight floor impact sound.

  • PDF

공동주택 이중바닥구조의 바닥충격음 저감성능 (Floor Impact Noise Reduction Performance of Double-Floor System in Apartments)

  • 백길옥;박홍근;문대호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.197-202
    • /
    • 2014
  • Floor Impact Noise is a structure-borne noise which is mainly caused by vibration of concrete slabs. The majority of previous studies have focused on investigating performance of absorbing sheets on the reduction of floor impact noise. But absorbing sheets do not efficiently reduce heavy-weight floor impact noise level because it cannot absorb slab vibration, which is the fundamental noise source. In this study, double-floor system was developed in order to reduce floor impact noise level in residual buildings. This floor system reduces heavy-weight impact noise level by reducing vibration response at the center of slab, which has maximum amplitude in the 1st vibration mode. In order to identify the performance of the double-floor system, experiments were planned. Primary test parameters are span of double floor, arrangement and types of absorbing sheets.

  • PDF

주파수 특성 분류를 통한 임팩트 볼 중량충격음의 주관적 평가 (Evaluation of heavy-weight impact sounds generated by impact ball through classification)

  • 김재호;이평직;전진용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.1142-1146
    • /
    • 2007
  • In this studies, subjective evaluation of heavy-weight floor impact sound through classification was conducted. Heavyweight impact sounds generated by an impact ball were recorded through dummy heads in apartment buildings. The recordings were classified according to the frequency characteristics of the floor impact sounds which are influenced by the floor structure with different boundary conditions and composite materials. The characteristics of the floor impact noise were investigated by paired comparison tests and semantic differential tests. Sound sources for auditory experiment were selected based on the actual noise levels with perceptual level differences. The results showed that roughness and fluctuation strength as well as loudness of the heavy-weight impact noise had a major effect on annoyance.

  • PDF

중량충격원에 따른 콘크리트 바닥판의 차음특성 분석 및 평가에 관한 연구 (Analysis and Evaluation of Impact Sound Insulation of Concrete Floor Structures in Response to Characteristics of Heavy-weight Impact Sources)

  • 유승엽;연준오;전진용
    • 한국소음진동공학회논문집
    • /
    • 제19권10호
    • /
    • pp.1062-1068
    • /
    • 2009
  • In this study, the impact force levels of bang machine and impact ball were measured, then the heavy-weight impact sounds generated by the bang machine and impact ball were investigated. It was found that the heavy-weight impact sources generated through modal excitation, and the impact force of the impact ball was similar to that of real impact source. The heavy-weight impact sounds were also measured in the real apartments with different slab thickness and floor structures. The results showed that the floor impact sound levels in terms of $L_{iFmax,AW}$, generated by impact ball sounds were reduced by using the resilient isolators. The frequency characteristics of heavy-weight impact sounds at 125 and 250 Hz were consistent with the characteristics of impact force spectrum. However, the difference between the impact sounds and the impact forces were found at 63 and 500 Hz due to the resonance of the floor structure and flanking noise, respectively.

중량충격음의 어노이언스에 대한 IACC 시간적 변화의 영향 (Effect of temporal variation of IACC on annoyance of heavy-weight floor impact noise)

  • 김재호;이평직;사토신이치;전진용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.287-290
    • /
    • 2007
  • In this study, the effect of temporal variation of IACC on subjective response to heavy-weight floor impact noise generated by impact ball was investigated. Subjective evaluation was conducted to investigate the effect of temporal variation of IACC on perception of heavy-weight floor impact noise using paired comparison test. The results showed that the effects of SPL and temporal variation of IACC on the annoyance of heavy-weight impact noises were independent and the contribution of SPL was much larger than that of temporal variation of IACC. It was also found that the effect of IACC is larger than temporal variation of IACC comparing to previous study.

  • PDF

중량바닥충격에 의한 소음 및 진동 특성 (Noise and Vibration Characteristics by Heavy-weight Floor Impact)

  • 서상호;송희수;전진용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.919-922
    • /
    • 2003
  • The correlation between noise and vibration by a heavy-weight floor impact was studied. The triggering technique was used for increasing the reliability and stability to measure the level of sound pressure, sound intensity and vibration acceleration. The simple finite element and rigid body analysis method were suggested to calculate the natural frequencies of the multi-layer floor system. The result show that the isolation material adapted to reduce the light-weight floor impact noise, causing the natural frequency lower, make resonance with dominant driving frequency, and increase the noise level very sharply. Therefore the noise level Peak in the region of low frequency, below 63Hz, would be related with the natural frequencies of the floor system.

  • PDF

실 충격원에 대한 바닥마감재 성능 분석 (Performance of floor coverings by impact sound)

  • 정진연;임정빈;이성찬;김경우
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.419-422
    • /
    • 2014
  • Floor impact sound level is affected by various factors. This study was examined about impact sources and floor coverings influenced at floor impact sound. So this study wishes to get method to reduce sound pressure level of receiving room. Light-weight impact sound in mid frequency and Heavy-weight impact sound in low frequency was affected by floor coverings. Therefore, method to reduce floor impact sound level is to use proper floor coverings. Some coverings can amplify the heavy-weight impact sound in low frequency. Floor impact sound sources used measurement and analysis were standard heavy-impact source(Tapping, Bang, Ball) and living impact sources(Cleaner, Chair, Toy-car, Soccer ball). And Floor coverings used measurements were various thickness vinyl, laminate(or ply-wood) floor. Especially vinyl floor coverings were very effective method to reduce floor impact.

  • PDF