• Title/Summary/Keyword: Heavy weight construction

Search Result 138, Processing Time 0.025 seconds

Analysis of a Long Volumetric Module Lift Using Single and Multiple Cranes

  • Khodabandelu, Ali;Park, JeeWoong;Choi, Jin Ouk;Sanei, Mahsa
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.563-570
    • /
    • 2022
  • Industrialized and modular construction is a growing construction technique that can transfer a large portion of the construction process to off-site fabrication yards. This method of construction often involves the fabrication, pre-assembly, and transportation of massive and long volumetric modules. The module weight keeps increasing as the modules become more complete (with infill) to minimize the work at the site and, as higher productivity can be achieved at the fabrication shop. Thus, a volumetric module delivery gets more challenging and risky. Despite its importance, past research paid relatively insufficient attention to the problem related to the lifting of heavy modules. This can be a complex and time-consuming problem with multiple lifting for transportation-and-installation operations both in fabrication yard and jobsite, and require complex crane operations (sometimes, more than one crane) due to crane load capacity and load balance/stability. This study investigates this problem by focusing on the structural perspective of lifting such long volumetric modules through simulation studies. Various scenarios of lifting a weighty module from the top using four lifting cables attached to crane hooks (either a single crane or double crane) are simulated in SAP software. The simulations account for various factors pertaining to structural indices, e.g., bending stress and deflection, to identify a proper method of module lifting from a structural point of view. The method can identify differences in structural indices allowing identification of structural efficiency and safety levels during lifting, which further allows the selection of the number of cranes and location of lifting points.

  • PDF

Development of Construction Cost Model through the Analysis of Critical Work Items (코스트 중요항목 분석을 통한 공사비 예측모델 연구)

  • Lee Yoo-Seob
    • Korean Journal of Construction Engineering and Management
    • /
    • v.4 no.4 s.16
    • /
    • pp.212-219
    • /
    • 2003
  • In construction project planning and control, a cost model performs a critical role such as cost determination on a contract stage and cost tracing. The model can maximize owner's profit and value within the project budget and optimize cost management works on overall construction implementation stages. A BoQ(Bill of Quantities) generally adopted in a unit price contract has been applied as an important tool for cost control and forecast. However a previous cost model based on the BoQ has shown limitations in that it requires too detailed information and heavy manpower on cost management and difficulty in keeping relationship with construction planning, scheduling and progress management. The each cost items and unit prices which constitute of construction works are individually very important management factors but the relative weight for each items and prices have a difference on the contents and conditions of each conditions of each construction works. In consideration of this structural mechanism of cost determination, this research is aimed at examining the critical factors affecting the construction cost determination and propose and verify a new cost forecasting model which is more simple and efficient and also keeps the accuracy of cost management.

Application of a weight-of-evidence model to landslide susceptibility analysis Boeun, Korea

  • Moung-Jin, Lee;Yu, Young-Tae
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.65-70
    • /
    • 2003
  • The weight-of-evidence model one of the Bayesian probability model was applied to the task of evaluating landslide susceptibility using GIS. Using the location of the landslides and spatial database such as topography, soil, forest, geology, land use and lineament, the weight-of-evidence model was applied to calculate each factor's rating at Boun area in Korea where suffered substantial landslide damage fellowing heavy rain in 1998, The factors are slope, aspect and curvature from the topographic database, soil texture, soil material, soil drainage, soil effective thickness, and topographic type from the soil database, forest type, timber diameter, timber age and forest density from the forest map, lithology from the geological database, land use from Landsat TM satellite image and lineament from IRS satellite image. Tests of conditional independence were performed for the selection of the factors, allowing the 43 combinations of factors to be analyzed. For the analysis, the contrast value, W$\^$+/and W$\^$-/, as each factor's rating, were overlaid to map laudslide susceptibility. The results of the analysis were validated using the observed landslide locations, and among the combinations, the combination of slope, curvature, topographic, timber diameter, geology and lineament show the best results. The results can be used for hazard prevention and planning land use and construction

  • PDF

Route Optimization for Energy-Efficient Path Planning in Smart Factory Autonomous Mobile Robot (스마트 팩토리 모빌리티 에너지 효율을 위한 경로 최적화에 관한 연구)

  • Dong Hui Eom;Dong Wook Cho;Seong Ju Kim;Sang Hyeon Park;Sung Ho Hwang
    • Journal of Drive and Control
    • /
    • v.21 no.1
    • /
    • pp.46-52
    • /
    • 2024
  • The advancement of autonomous driving technology has heightened the importance of Autonomous Mobile Robotics (AMR) within smart factories. Notably, in tasks involving the transportation of heavy objects, the consideration of weight in route optimization and path planning has become crucial. There is ongoing research on local path planning, such as Dijkstra, A*, and RRT*, focusing on minimizing travel time and distance within smart factory warehouses. Additionally, there are ongoing simultaneous studies on route optimization, including TSP algorithms for various path explorations and on minimizing energy consumption in mobile robotics operations. However, previous studies have often overlooked the weight of the objects being transported, emphasizing only minimal travel time or distance. Therefore, this research proposes route planning that accounts for the maximum payload capacity of mobile robotics and offers load-optimized path planning for multi-destination transportation. Considering the load, a genetic algorithm with the objectives of minimizing both travel time and distance, as well as energy consumption is employed. This approach is expected to enhance the efficiency of mobility within smart factories.

Construction Stage Analysis of Hybrid Composite Cable-Stayed Girder Bridge Using Eccentrically Loaded Derrick Crane (편중 가능한 사장교 가설용 데릭 크레인을 이용한 합성형 복합 사장교 시공 단계 해석)

  • Park, Taekwun;Kim, Moon Kyum;Won, Jong Hwa
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.277-286
    • /
    • 2010
  • Derrick or caterpillar crane is generally used for the long-span/cable-stayed bridge construction by pre-cast segment lifting from over-land or water transportation. The heavy weight of them, however, could make defects on unstable under-construction structure and, furthermore a method of conventional segment transportation is also able to occur additional time and cost. In this study, in order to improve conventional construction method, the newly developed derrick crane is mainly considered. It could be not only eccentrically loadable on constructing girder but having rotatable boom for segment transportation from back-side. A series of construction stage using developed derrick crane is defined and also its numerical analysis is conducted. To reflect load characteristics of developed derrick crane on construction stage analysis, on/out of service load is separately calculated by considering vertical/lateral rotation range of boom and it is loaded on 4 fixed positions of crane. The derrick crane on this study could be time and cost saving solution for cable-stayed bridge construction and also make contributions to construction load reduction in its process.

A Study on Use and improvement of Construction type infiltration gallery (조립식 집수암거의 개량과 이용에 관한 연구)

  • 함준호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.14 no.2
    • /
    • pp.2593-2602
    • /
    • 1972
  • Plastic pipes Wrapped with synthetic filter are recently used for drainage or Collecting of Underground water. But it's use is possible only for small size of diameter less than 300mm, because large size plastic pipes are not readily availabe. For large diameter infiltration gallery, porous concrete pipes are now used, but it's heavy weight brings difficulties in making, moving and setting of the pipes. With it's conventional method of filter setting, fine sands are brought into the pipes to make trouble to lifting pumps and channels Therefore, initial construction cost and maintenance cost become high. To solve-this problem, new method is developed and tested. Small PVC pipes(diameter 14mm) are assembled at the site of construction to newly devised I beam type circls. The size of circular inpiltration gallery is optionally determined by I beam type circle which support small PVC pipes and is made of PVC amterial. This gallery are wrappd with syntheitc filter to prevent sand instruction. In this test, the diameter of 300, 400, 500mm were used. I beam type circles were made with PVC plated with thickness. t=6, 9, 12mm. Water quantity collected through the PVC circulor gallery are measured and the strengths of the gallery. 1. Allowable setting depth of gallery pipe below graund for the case of t=6mm, D=500mm is 2.72m. 2. Collected water quantity depends on soil texture, depth of water grandient of water surface, filter material angle of setting etc. 3. About 126% of water quantity collected from the one gallery pipe measured in two gallery pipes of two parallel installation.

  • PDF

Model Test on the Effect of Bearing Capacity for In-situ Top Base Method in sand (현장타설 팽이말뚝기초공법의 지지력 증대효과에 관한 모형실험 연구)

  • Kang, Hong-Kyu;Kim, Chan-Kuk;Lee, Bong-Yul;Kim, Hak-Moon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.597-602
    • /
    • 2005
  • The present precast top-base method create many problems of requiring it plant facilities, transportation and installation, due to the heavy weight of and it takes too long time to set it up on site. In order to improve and solve these problems, in-situ Top-Base method is developed. It include processes that install Top-Base mold made of poly-ethylene into ground, then pouring concrete into the mold, and fill the rest gaps with broken stones. Considerable advantages can be obtained by applying in-situ Top-Base method in aspects of the stability, economical and construction efficiency. In this research, model tests for in-situ Top-Base system are carried out in other to the investigate the load delivering mechanism and the effect of bearing capacity.

  • PDF

Development of Blade on 9㎥ Class of Mixer Drum (9㎥급 믹서드럼 블레이드의 개발)

  • Shin, H.G.;Choi, H.C.;Bean, D.H.;Kim, Y.C.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.3
    • /
    • pp.65-71
    • /
    • 2011
  • The concrete mixer truck which is in charge of raw materials in civil engineering construction of the concrete loading, transport, placement, is used $6m^3$, $7m^3$ class in domestic(Korea). But in the case of the international construction fields are utilized $9m^3$ or above class because of the large-scale engineering and construction circumstances. In this paper, to develop a large $9m^3$ class mixer drum and the mixer drum in order to complement the technical and discharge that is responsible for stirring the blades by applying optimal design through implementation of the optimal shape of the concrete in the drum maintenance and placement of high-quality effects on increasing discharge such as advanced conventional drum mixer is to secure and differentiated technology. Large, heavy weight in development and uphold the drum mixer vehicle sub-frame is required to settle the design of the existing class mixer drum frames per $6m^3$ changed to account for changes in slope and length using CATIA V5 3D modeling work was performed.

Level of Safety Awareness of Construction Workers (건설현장 작업자의 내면적 안전의식 수준)

  • Lee, Wang Gi;Park, Seong Yong;Son, Ki Sang
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.3
    • /
    • pp.48-53
    • /
    • 2017
  • Many construction accidents can be lead to a death occurring at construction sites. These are considerably due to potentially-hazardous equipment and machine or unexpected collapsion at earth work due to land slide and so on. Almost 50% of the total death and injury, occurred in construction sites in 2015. 66% of those serious accidents are due to falling occurring from construction sites when they work. Therefore, causes and recommendations of each accident should be deeply thought and analysed The indirect causes are directly related to safe consciousness of the construction workers. Actually, their safety consciousness are not high, even very low, it is thought. Questionnaire survey sheets have been distributed to Seoul, Incheon, and Gyunggi-Do area, first. And then, the authors have collected those directly at sites, in order to increase collection rate of the sheets. The totally, collected sheets are 295 sheets. And, they are analysed using SPSS version 19 package program. Workers internal consciousness has been investigated and reviewed and analysed by statistical method such as frequency rate, crossed, and correlated analysis. And finally the conclusions for the above analyses are as follows; Heavy weight worth a crew of more than two workers should be necessarily considered for the advanced safety plan and needed for making a highly potential hazard group at construction sites. Safety consciousness, earing p.p.e, workman ship should be mainly considered for investing safety costs with an aspect of human factor.

Physical Properties of Light Weight Foamed Glass Using Waste Glass Powder and Fly Ash (폐유리분말과 플라이애시를 사용한 경량 발포소재의 물리적 특성)

  • Song, Hun;Shin, Hyeon-Uk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.4
    • /
    • pp.328-334
    • /
    • 2015
  • Building insulation materials use for the purpose of energy saving. Insulation materials can be classified inorganic and organic insulation materials. Inorganic insulation is used for fire resistive performance parts and organic insulation is used for thermal performance parts. Meanwhile, organic insulation is due to toxic gas emission in fire. Inorganic insulation is too heavy and low thermal performance than organic materials. This study is focused on evaluation of the physical properties of inorganic foam material using industrial by-products such as waste glass powder and fly ash. From the test result, inorganic foam materials for the applicability of fire-resistance and insulation light-weight materials.