• Title/Summary/Keyword: Heavy press

Search Result 224, Processing Time 0.025 seconds

Effect of rain on flutter derivatives of bridge decks

  • Gu, Ming;Xu, Shu-Zhuang
    • Wind and Structures
    • /
    • v.11 no.3
    • /
    • pp.209-220
    • /
    • 2008
  • Flutter derivatives provide the basis of predicting the critical wind speed in flutter and buffeting analysis of long-span cable-supported bridges. Many studies have been performed on the methods and applications of identification of flutter derivatives of bridge decks under wind action. In fact, strong wind, especially typhoon, is always accompanied by heavy rain. Then, what is the effect of rain on flutter derivatives and flutter critical wind speed of bridges? Unfortunately, there have been no studies on this subject. This paper makes an initial study on this problem. Covariance-driven Stochastic Subspace Identification (SSI in short) which is capable of estimating the flutter derivatives of bridge decks from their steady random responses is presented first. An experimental set-up is specially designed and manufactured to produce the conditions of rain and wind. Wind tunnel tests of a quasi-streamlined thin plate model are conducted under conditions of only wind action and simultaneous wind-rain action, respectively. The flutter derivatives are then extracted by the SSI method, and comparisons are made between the flutter derivatives under the two different conditions. The comparison results tentatively indicate that rain has non-trivial effects on flutter derivatives, especially on and $H_2$ and $A_2$thus the flutter critical wind speeds of bridges.

Composite material optimization for heavy duty chassis by finite element analysis

  • Ufuk, Recep;Ereke, Murat
    • Advances in Automotive Engineering
    • /
    • v.1 no.1
    • /
    • pp.41-59
    • /
    • 2018
  • In the study, investigation of fiber- reinforced composite materials that can be an alternative to conventional steel was performed by finite element analysis with the help of software. Steel and composite materials have been studied on a four axle truck chassis model. Three-dimensional finite element model was created with software, and then analyzes were performed. The analyses were performed for static and dynamic/fatigue cases. Fatigue cases are formed with the help of design spectra model and fatigue analyses were performed as static analyses with this design spectra. First, analyses were performed for steel and after that optimization analyses were made for the AS4-PEEK carbon fiber composite and Eglass-Epoxy fiber composite materials. Optimization of composite material analyzes include determining the total laminate thickness, thickness of each ply, orientation of each ply and ply stacking sequence. Analyzes were made according to macro mechanical properties of composite, micromechanics case has not been considered. Improvements in weight reduction up to %50 provided at the end of the composite optimization analyzes with satisfying stiffness performance of chassis. Fatigue strength of the composite structure depends on various factors such as, fiber orientation, ply thickness, ply stack sequence, fiber ductility, ductility of the matrix, loading angle. Therefore, the accuracy of theoretical calculations and analyzes should be correlated by testing.

Performance of structures and infrastructure facilities during an EF4 Tornado in Yancheng

  • Tao, Tianyou;Wang, Hao;Yao, Chengyuan;Zou, Zhongqin;Xu, Zidong
    • Wind and Structures
    • /
    • v.27 no.2
    • /
    • pp.137-147
    • /
    • 2018
  • Heavy damages to properties with attendant losses were frequently caused by tornadoes in recent years. This natural hazard is one of the most destructive wind events that must be fully studied and well understood in order to keep the safety of structures and infrastructure facilities. On June 23, 2016, a severe tornado, which is an Enhanced Fujita (EF) 4 storm, occurred in the rim of a coastal city named as Yancheng in China. Numerous low-rise buildings as well as facilities (e.g., transmission towers) were destroyed or damaged. In this paper, damages to structures and infrastructure facilities by the severe tornado are reviewed. The collapses of residential buildings, industrial structures and other infrastructure facilities are described. With an overview of the damages, various possible mechanisms of the collapse are then discussed and utilized to reveal the initiation of the damage to various facilities. It is hoped that this paper can provide a concise but comprehensive reference for the researchers and engineers to help understand the tornado effects on structures and expose the vulnerabilities that need to be improved in current wind-resistant design practices.

A lower bound analytical estimation of the fundamental lateral frequency down-shift of items subjected to sine testing

  • Nali, Pietro;Calvi, Adriano
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.1
    • /
    • pp.79-90
    • /
    • 2020
  • The dynamic coupling between shaker and test-article has been investigated by recent research through the so called Virtual Shaker Testing (VST) approach. Basically a VST model includes the mathematical models of the test-item, of the shaker body, of the seismic mass and the facility vibration control algorithm. The subsequent coupled dynamic simulation even if more complex than the classical hard-mounted sine test-prediction, is a closer representation of the reality and is expected to be more accurate. One of the most remarkable benefits of VST is the accurate quantification of the frequency down-shift (with respect to the hard-mounted value), typically affecting the first lateral resonance of heavy test-items, like medium or large size Spacecraft (S/Cs), once mounted on the shaker. In this work, starting from previous successful VST experiences, the parameters having impact on the frequency shift are identified and discussed one by one. A simplified analytical system is thus defined to propose an efficient and effective way of calculating the lower bound frequency shift through a simple equation. Such equation can be useful to correct the S/C lateral natural frequency measured during the test, in order to remove the contribution attributable to the shaker in use. The so-corrected frequency value becomes relevant when verifying the compliance of the S/C w.r.t. the frequency requirement from the Launcher Authority. Moreover, it allows to perform a consistent post-test correlation of the first lateral natural frequency of S/C FE model.

Precision of predicted 3D numerical solutions of vortex-induced oscillation for bridge girders with span-wise varying geometry

  • Harada, Takehiko;Yoshimura, Takeshi;Tanaka, Takahisa;Mizuta, Yoji;Hashiguchi, Takafumi;Sudo, Makoto;Miyazaki, Masao
    • Wind and Structures
    • /
    • v.7 no.1
    • /
    • pp.13-28
    • /
    • 2004
  • A method of numerical analysis without conducting 3D wind tunnel model tests was examined in our previous study for predicting vortex-induced oscillation of bridge girders with span-wise varying geometry. The aerodynamic damping forces measured for plural wind tunnel 2D models were used in the analysis. A further study was conducted to examine the precision of solution obtained by this method. First, the responses of vortex-induced oscillation of two rocking models and a taut-strip bridge girder model with span-wise varying geometry were measured. Next, the responses of these models were numerically analyzed by means of this method, and then a comparison was made between the obtained $Vr-A-{\delta}_a$ contour diagram of each 3D model in the wind tunnel test and the diagram in the numerical analysis. Since close correlations were observed between each two $Vr-A-{\delta}_a$diagrams obtained in the model test and in the analysis in cases where the 3D model did not have strong three-dimensionality, our findings revealed that the predicted solution proved to be reasonably accurate.

Rainfall induced instability of mechanically stabilized earth embankments

  • Roy, Debasis;Chiranjeevi, K.;Singh, Raghvendra;Baidya, Dilip K.
    • Geomechanics and Engineering
    • /
    • v.1 no.3
    • /
    • pp.193-204
    • /
    • 2009
  • A 10.4-m high highway embankment retained behind mechanically stabilized earth (MSE) walls is under construction in the northeastern part of the Indian state of Bihar. The structure is constructed with compacted, micaceous, grey, silty sand, reinforced with polyester (PET) geogrids, and faced with reinforced cement concrete fascia panels. The connections between the fascia panels and the geogrids failed on several occasions during the monsoon seasons of 2007 and 2008 following episodes of heavy rainfall, when the embankment was still under construction. However, during these incidents the MSE embankment itself remained by and large stable and the collateral damages were minimal. The observational data during these incidents presented an opportunity to develop and calibrate a simple procedure for estimating rainfall induced pore water pressure development within MSE embankments constructed with backfill materials that do not allow unimpeded seepage. A simple analytical finite element model was developed for the purpose. The modeling results were found to agree with the observational and meteorological records from the site. These results also indicated that the threshold rainwater infiltration flux needed for the development of pore water pressure within an MSE embankment is a monotonically increasing function of the hydraulic conductivity of backfill. Specifically for the MSE embankment upon which this study is based, the analytical results indicated that the instabilities could have been avoided by having in place a chimney drain immediately behind the fascia panels.

Mobile harbor: structural dynamic response of RORI crane to wave-induced rolling excitation

  • Cho, Jin-Rae;Han, Ki-Chul;Hwang, Soon-Wook;Cho, Choon-Soo;Lim, O-Kaung
    • Structural Engineering and Mechanics
    • /
    • v.43 no.5
    • /
    • pp.679-690
    • /
    • 2012
  • A new concept sea-floating port called mobile harbor has been introduced, in order to resolve the limitation of current above-ground port facilities against the continuous growth of worldwide marine transportation. One of important subjects in the design of a mobile harbor is to secure the dynamic stability against wave-induced excitation, because a relatively large-scale heavy crane system installed at the top of mobile harbor should load/unload containers at sea under the sea state up to level 3. In this context, this paper addresses a two-step sequential analytical-numerical method for analyzing the structural dynamic response of the mobile harbor crane system to the wave-induced rolling excitation. The rigid ship motion of mobile harbor by wave is analytically solved, and the flexible dynamic response of the crane system by the rigid ship motion is analyzed by the finite element method. The hydrodynamic effect between sea water and mobile harbor is reflected by means of the added moment of inertia.

Process Design on Fabrication of Large Sized Ring by Mandrel Forging of Hollow Cast Ingot (중공 잉곳을 이용한 대형 링 단조품 제조공정 설계 연구)

  • Lee, S.U.;Lee, Y.S.;Lee, M.W.;Lee, D.H.;Kim, S.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.6
    • /
    • pp.329-336
    • /
    • 2010
  • Ring forging process is more appropriate for high-length and thin walled ring, because it utilizes the forging press and hence does not require heavy-duty ring rolling mill. Although ring forging process is very simple and economic for facilities, the process is not efficient because of multi-forging-step and low material utilization. An effective ring forging process is developed using a hollow ingot. When a hollow ingot is used with a workpiece, the ingot can be forged into a final ring without multi-stage pre-forging process, such as, cogging, upsetting, and piercing, etc.. Finally it has advantages of the material utilization and process improvement because a few reheating and forging process are not necessary to make workpiece for ring forging. The important design variables are the applied plastic deformation energy to eliminate cast structure and make uniform properties. In this study, the mechanical properties after forging of hollow cast ingot were investigated from the experiment using circumferential sectional model. Also, the effects of process variables were studied by FEM simulation on the basis of thermo-visco-plastic constitutive equation. Applied strain is different at each position in length direction because diameter of hollow ingot is different in length direction. The different strain distribution become into a narrow gap by additional plastic deformation during diameter extension process.

Experimental study on seismic performance of partial penetration welded steel beam-column connections with different fillet radii

  • Ge, Hanbin;Jia, Liang-Jiu;Kang, Lan;Suzuki, Toshimitsu
    • Steel and Composite Structures
    • /
    • v.17 no.6
    • /
    • pp.851-865
    • /
    • 2014
  • Full penetration welded steel moment-resisting frame (SMRF) structures with welded box sections are widely employed in steel bridges, where a large number of steel bridges have been in operation for over fifty years in Japan. Welding defects such as incomplete penetration at the beam-column connections of these existing SMRF steel bridge piers were observed during inspection. Previous experiments conducted by the authors' team indicate that gusset stiffeners (termed fillets in this study) at the beam-web-to-column-web joint of the beam-column connections may play an important role on the seismic performance of the connections. This paper aims to experimentally study the effect of the fillet radius on seismic performance of the connections with large welding defects. Four specimens with different sizes of fillet radii were loaded under quasi-static incremental cyclic loading, where different load-displacement relations and cracking behaviors were observed. The experimental results show that, as the size of the fillet radius increases, the seismic performance of the connections can be greatly improved.

An algorithm to simulate the nonlinear behavior of RC 1D structural members under monotonic or cyclic combined loading

  • Nouban, Fatemeh;Sadeghi, Kabir
    • Structural Engineering and Mechanics
    • /
    • v.66 no.3
    • /
    • pp.305-315
    • /
    • 2018
  • Interaction of lateral loading, combined with axial force needs to be determined with care in reinforced concrete (RC) one-dimensional structural members (1D SMs) such as beam-columns (BCs) and columns. RC 1D SMs under heavy axial loading are known to fail by brittle mode and small lateral displacements. In this paper, a macro element-based algorithm is proposed to analyze the RC 1D SMs under monotonic or cyclic combined loading. The 1D SMs are discretized into macro-elements (MEs) located between the critical sections and the inflection points. The critical sections are discretized into fixed rectangular finite elements (FRFE). The nonlinear behavior of confined and unconfined concretes and steel elements are considered in the proposed algorithm. The proposed algorithm has been validated by the results of experimental tests carried out on full-scale RC structural members. The evolution of ultimate strain at extreme compression fiber of a rectangular RC section for different orientations of lateral loading shows that the ultimate strain decreases with increasing the axial force. In the examined cases, this ultimate strain ranges from 0.0024 to 0.0038. Therefore, the 0.003 value given by ACI-318 code for ultimate strain, is not conservative and valid for the combined load cases with significant values of axial force (i.e. for the axial forces heavier than 70% of the ultimate axial force).