• Title/Summary/Keyword: Heavy metal overload

Search Result 2, Processing Time 0.02 seconds

Evaluation of reference genes for RT-qPCR study in abalone Haliotis discus hannai during heavy metal overload stress

  • Lee, Sang Yoon;Nam, Yoon Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.19 no.4
    • /
    • pp.21.1-21.11
    • /
    • 2016
  • Background: The evaluation of suitable reference genes as normalization controls is a prerequisite requirement for launching quantitative reverse transcription-PCR (RT-qPCR)-based expression study. In order to select the stable reference genes in abalone Haliotis discus hannai tissues (gill and hepatopancreas) under heavy metal exposure conditions (Cu, Zn, and Cd), 12 potential candidate housekeeping genes were subjected to expression stability based on the comprehensive ranking while integrating four different statistical algorithms (geNorm, NormFinder, BestKeeper, and ${\Delta}CT$ method). Results: Expression stability in the gill subset was determined as RPL7 > RPL8 > ACTB > RPL3 > PPIB > RPL7A > EF1A > RPL4 > GAPDH > RPL5 > UBE2 > B-TU. On the other hand, the ranking in the subset for hepatopancreas was RPL7 > RPL3 > RPL8 > ACTB > RPL4 > EF1A > RPL5 > RPL7A > B-TU > UBE2 > PPIB > GAPDH. The pairwise variation assessed by the geNorm program indicates that two reference genes could be sufficient for accurate normalization in both gill and hepatopancreas subsets. Overall, both gill and hepatopancreas subsets recommended ribosomal protein genes (particularly RPL7) as stable references, whereas traditional housekeepers such as ${\beta}-tubulin$ (B-TU) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes were ranked as unstable genes. The validation of reference gene selection was confirmed with the quantitative assay of MT transcripts. Conclusions: The present analysis showed the importance of validating reference genes with multiple algorithmic approaches to select genes that are truly stable. Our results indicate that expression stability of a given reference gene could not always have consensus across tissue types. The data from this study could be a good guide for the future design of RT-qPCR studies with respect to metal regulation/detoxification and other related physiologies in this abalone species.

Molecular cloning of metal-responsive transcription factor-1 (MTF-1) and transcriptional responses to metal and heat stresses in Pacific abalone, Haliotis discus hannai

  • Lee, Sang Yoon;Nam, Yoon Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.20 no.7
    • /
    • pp.9.1-9.13
    • /
    • 2017
  • Background: Metal-responsive transcription factor-1 (MTF-1) is a key transcriptional regulator playing crucial roles in metal homeostasis and cellular adaptation to diverse oxidative stresses. In order to understand cellular pathways associated with metal regulation and stress responses in Pacific abalone (Haliotis discus hannai), this study was aimed to isolate the genetic determinant of abalone MTF-1 and to examine its expression characteristics under basal and experimentally stimulated conditions. Results: The abalone MTF-1 shared conserved features in zinc-finger DNA binding domain with its orthologs; however, it represented a non-conservative shape in presumed transactivation domain region with the lack of typical motifs for nuclear export signal (NES) and Cys-cluster. Abalone MTF-1 promoter exhibited various transcription factor binding motifs that would be potentially related with metal regulation, stress responses, and development. The highest messenger RNA (mRNA) expression level of MTF-1 was observed in the testes, and MTF-1 transcripts were detected during the entire period of embryonic and early ontogenic developments. Abalone MTF-1 was found to be Cd inducible and highly modulated by heat shock treatment. Conclusion: Abalone MTF-1 possesses a non-consensus structure of activation domains and represents distinct features for its activation mechanism in response to metal overload and heat stress. The activation mechanism of abalone MTF-1 might include both indirect zinc sensing and direct de novo synthesis of transcripts. Taken together, results from this study could be a useful basis for future researches on stress physiology of this abalone species, particularly with regard to heavy metal detoxification and thermal adaptation.