• Title/Summary/Keyword: Heavy metal effects

Search Result 477, Processing Time 0.028 seconds

The Effect of Cement Admixtures on Solidification of Tannery Sludge based Cement Method (피혁슬러지 고형화시 시멘트 혼화제의 영향)

  • 주소영;박상찬;전태성;손종렬;김태영
    • Journal of environmental and Sanitary engineering
    • /
    • v.18 no.4
    • /
    • pp.36-44
    • /
    • 2003
  • The cement-based system among S/S(Solidification/Stabilization) is widely used to treat hazardous wastes. In this study, tannery sludge was solidified to evaluate the stabilization effects of using admixtures in the cement-based S/S. Fly ash as substitute also used to increase the strength of the S/S of hazardous waste. The compressive strength measurement and leaching experiment of chromium metal of solidified mortar were carried out to compare and evaluate the physical and chemical characteristics of solidified hazardous waste sludge. From the result of this study, there was increased of compressive strength by using AEW-3(early-hardening AE water reducing agent), and leaching concentration of chromium became low enough to satisfy the regulatory criteria. The successful solidification for the organic contaminant and heavy metal in hazardous waste should enable to treat by cement-based system using early-hardening AE water reducing admixture and fly ash as substituted cement.

Magnetic Separation of FCC Equilibrium Catalyst by HGMS

  • Xiang, Fazhu;He, Pingbo;Chen, Jin
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.770-775
    • /
    • 2001
  • Effects of magnetic field and carrier gas velocity on the magnetic separation of FCC catalyst by a high gradient magnetic separator were studied. The activities of the equilibrium catalyst, the magnetic particles and the nonmagnetic particles were evaluated in a fixed bed microreactor The results showed that heavy metal contaminated catalyst can be selectively separated by means of high gradient magnetic separation at magnetic field 0.5T and carrier gas velocity 0.3m.s$^{-1}$ , and lightly metal contaminated catalyst retained high catalytic activity.

  • PDF

Effects of Carbon Content on the Weldability of B-Containing $620^{\circ}C$ Grade High Cr Ferritic Cast Steel for Turbine Casing (B 첨가 $620^{\circ}C$급 터빈 케이싱용 고Cr 페라이트계 주강의 용접성에 미치는 탄소함량의 영향)

  • Seo, Won-Chan;Bang, Kook-Soo;Chi, Byung-Ha
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.41-45
    • /
    • 2008
  • Effectsof carbon content on the weldability of B-containing 620 grade high Cr ferritic cast steels were investigated. Cast steel with lower carbon content of 0.07% showed lower HAZ hardness because of the formation of lower carbon martensite in HAZ. It also showed less solidification cracking susceptibility in weld metal because of the formation of delta ferrite. However, hot ductility showed no difference between cast steels with lower and higher carbon contents. Cast steel with lower carbon content showed greater HAZ softening after PWHT in the region heated between AC1 and AC3 because of its higher base metal hardness.

Detection of Toxic Heavy Metal, Co(II) Trace via Voltammetry with Semiconductor Microelectrodes

  • Ly, Suw Young;Lee, Chang Hyun;Koo, Jae Mo
    • Toxicological Research
    • /
    • v.33 no.2
    • /
    • pp.135-140
    • /
    • 2017
  • The cobalt (Co(II)) ion is a main component of alloys and considered to be carcinogenic, especially due to the carcinogenic and toxicological effects in the aquatic environment. The toxic trace of the Co(II) detection was conducted using the infrared photodiode electrode (IPDE) using a working electrode, via the cyclic and square-wave anodic stripping voltammetry. The results indicated a sensitive oxidation peak current of Co(II) on the IPDE. Under the optimal conditions, the common-type glassy carbon, the metal platinum, the carbon paste, and the carbon fiber microelectrode were compared with the IPDE in the electrolyte using the standard Co(II). The IPDE was found to be far superior to the others.

Design and Synthesis of Novel Rhodamine-based Chemosensor Probe Toward Cu2+ Cation

  • Son, Young-A
    • Textile Coloration and Finishing
    • /
    • v.26 no.1
    • /
    • pp.7-12
    • /
    • 2014
  • Nowdays, fluorescent rhodamine chemosensors have attracted a worldwide interest due to its ability to selectively detect heavy and transition metal cations. Due to the importance in environmental and biological toxic effects, the developments of fluorescent chemosensors have been received considerable attention in recent. Especially, a rhodamine-based chemosensor probes have been proved to be useful by exhibiting the efficient "off-on" fluorescence switching toward selected metal cations. This fluorophore can undergo the transformation from non-fluorescent and colorless spirolactam derivative to fluorescent ring-open form. In this study, a new fluorescent chemosensor was synthesized using rhodamine B through two-step procedures, and its selectivity and related optical property were characterized. Selectivity and sensitivity was found toward $Cu^{2+}$ guest molecules and then related optical properties of rhodamine B based fluorescent chemosensor compound were characterized using discussed. In addition, computational calculation was used to determine the HOMO/LUMO values.

Analysis of Oppositive Interaction between Cd and Zn Toxicity in Coastal Algae (연안 조류에서 Cd와 Zn 독성의 반대 작용 분석)

  • 이봉헌;김정호;정성옥;김성미;박흥재
    • Journal of Environmental Science International
    • /
    • v.11 no.10
    • /
    • pp.1069-1074
    • /
    • 2002
  • The growth and heavy metal experiments revealed oppositive interactions between toxic metals(Zn and Cd) and Mn when the coastal diatom T. pseudonana were used. Cd and Zn inhibited the algal growth rate only at low Mn ion concentrations and this effect could be accounted for an inhibition of cellular Mn take by the toxic metals. Mn and Zn inhibited cellular Cd take and this indicated a reciprocal effects among the metals with respect to metal take. Saturation kinetics modeling of the take data was consistent with two metals competing with each other for binding to the Mn take system and with both Cd and Mn being transported into the cell by that system. Mathematical modeling of Mn and Cd take data revealed evidence fur a Cd efflux system.

The Treatment of Heavy Metal-cyanide Complexes Wastewater by $Zn^{+2}/Fe^{+2}$ Ion and Coprecipitation in Practical Plant(I) (아연백법 및 공침공정을 이용한 복합 중금속-시안착염 폐수의 현장처리(I))

  • Lee, Jong-Cheul;Kang, Ik-Joong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.12
    • /
    • pp.1381-1389
    • /
    • 2007
  • Wastewater discharged by industrial activities of metal finishing and electroplating units is often contaminated by a variety of toxic or otherwise harmful substances which have a negative effects on the water environment. The treatment method of heavy metal-cyanide complexes wastewater by alkaline chlorination have already well-known($1^{st}$ Oxidation: pH 10, reaction time 30 min, ORP 350 mV, $2^{nd}$ Oxidation: ORP 650 mV). In this case, the efficiency for the removal of ferro/ferri cyanide by this general alkaline chlorination is very high as 99%. But the permissible limit of Korean waste-water discharge couldn't be satisfied. The initial concentration of cyanide was 374 mg/L(the Korean permissible limit of cyanide is 1.0 mg/L max.). So a particular focus was given to the treatment of heavy metal-cyanide complexes wastewater by $Zn^{+2}/Fe^{+2}$ ion and coprecipitation after alkaline chlorination. And we could meet the Korean permissible limit of cyanide(the final concentration of cyanide: 0.30 mg/L) by $Zn^{+2}/Fe^{+2}$ ion and coprecipitation(reaction time: 30 min, pH: 8.0, rpm: 240). The removal of Chromium ion by reduction(pH: 2.0 max, ORP: 250 mV) and the precipitation of metal hydroxide(pH: 9.5) is treated as 99% of removal efficiency. The removal of Copper and Nickel ion has been treated by $Na_2S$ coagulation-flocculation as 99% min of the efficiency(pH: $9.09\sim10.0$, dosage of $Na_2S:0.5\sim3.0$ mol). It is important to note that the removal of ferro/ferri cyanide of heavy metal-cyanide complexes wastewater should be employed by $Zn^{+2}/Fe^{+2}$ ion and coprecipitation as well as the alkaline chlorination for the Korean permissible limit of waste-water discharge.

Toxic Effects of Heavy Metal (Cd, Cu, Zn) on Population Growth Rate of the Marine Diatom (Skeletonema costatum) (중금속(Cd, Cu, Zn)이 해산규조류(Skeletonema costatum)의 개체군 성장률에 미치는 독성영향)

  • Hwang, Un-Ki;Ryu, Hyang-Mi;Lee, Ju-Wook;Lee, Seung-Min;Kang, Han Seung
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.3
    • /
    • pp.243-249
    • /
    • 2014
  • In this study, we evaluated the toxic effects of heavy metals (Cd, Cu, Zn) on the population growth rate (r) of the marine diatom, Skeletonema costatum. S. costatum. The population growth rate (r) of the species was determined after 96 hrs. of exposure to Cd (0, 0.63, 1.25, 2.50, 5.00, 10.00 ppm), Cu (0, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50 ppm) and Zn (0, 0.31, 0.63, 1.25, 2.00, 2.50, 5.00 ppm). It was observed that 'r' in the control (absence of Cd, Cu and Zn) were greater than 0.05, however suddenly decreased with increased heavy metal concentrations. Cd, Cu and Zn reduced 'r' in a dose-dependent manner and a significant reduction were occurred at concentration of greater than 1.25, 1.25 and 2.50 ppm, respectively. Based on the toxicity, the heavy metal were ranked as Cu>Zn>Cd, with EC50 values of 1.11, 2.13 and 6.84 ppm, respectively. The lowest-observed-effective-concentration (LOEC) of 'r' in exposed to Cd, Cu and Zn were 1.25, 1.00, 2.00 ppm, respectively. Precisely, a concentration of greater than 1.25 ppm of Cd, 1.00 ppm of Cu and 2.00 ppm of Zn in marine ecosystems induced toxic effect on the 'r' of S. costatum. Based on our results, we suggested that the 'r' of S. costatum might be a useful bio indicator for the toxicity assessment of heavy metals in marine ecosystems.

Effects of heavy metals and albumin on lysozyme activity

  • Ko, Eun;Ku, Seul-I;Kim, Dae-yoon;Shin, Sooim;Choi, Moonsung
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.4
    • /
    • pp.367-370
    • /
    • 2018
  • Lysozyme is an antibacterial enzyme that is found in most of body fluids. Lysozyme in tears plays a primary role in protecting eye from harmful environments; if lysozyme is degraded or inhibited, eyes are likely to be more vulnerable to bacterial infection. In this study, lysozyme activity was evaluated according to varying concentrations of heavy metals, copper, zinc, cobalt and manganese and light metal, calcium that are frequently found in airborne particulate matters and was assayed using a dye-quenching lysozyme substrate, Micrococcus lysodeikticus. Less fluorescence intensity was observed with increasing amounts of copper, zinc, manganese and cobalt but not with calcium suggesting that these metals have some affinity with lysozyme and inhibit lysozyme activity. When albumin, the second most common protein in tears, was added on the reaction of lysozyme and metals, lysozyme activity was partially restored. This finding suggests that the albumin might protect damage caused by metals on lysozyme. To identify whether the decrease in enzymatic activity was related to structural changes of lysozyme, SDS-PAGE was conducted and only with copper did lysozyme show marked smearing bands on the SDS-gel, meaning that copper degraded lysozyme consistent with the sharpest activity decrease.

Effects of Soil Amendments Application on Growth of Rice Cultivated in Soils Polluted with Heavy Metal(loid) and on the As and Cd Content in Brown Rice

  • Yoo, Ji-Hyock;Park, Sang-Won;Kim, Won-Il;Lee, Sang-Beom;Oh, Kyeong-Seok;Moon, Byeong-Churl;Kim, Sung-Chul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.6
    • /
    • pp.663-673
    • /
    • 2017
  • Heavy metal(loid) contamination of rice is the main issue in abandoned metal mine area with regard to food safety. A field study was conducted in mine area to see if soil amendments treatment including calcium superphosphate, sulfur, steel slag and S-containing fertilizer could reduce As and/or Cd content in rice grain and increase the growth of rice. The As content in brown rice reduced to 60% compared to the control only in $7.0Mg\;ha^{-1}$ of steel slag treatment. Cd reduction in rice was thought to be not the effect of amendments but the result from the difference in growth and development of rice plant and this could be ascribed to low soil Cd availability to rice plant. Compared with control, increased rice yield of cultivar Hwanggeumnuri was 1.3~2.2 and $1.5Mg\;ha^{-1}$ in calcium super phosphate and S-containing fertilizer treatment, respectively and the trend was also observed in cultivar Ungwang. However, steel slag treatment reduced the Ungwang yield by $0.4{\sim}0.9Mg\;ha^{-1}$. Future work will be needed to establish the agricultural measure with which secure the safety and yield of rice simultaneously.