• Title/Summary/Keyword: Heavy metal effects

Search Result 477, Processing Time 0.024 seconds

Sulfate Reduction for Bioremediation of AMD Facilitated by an Indigenous Acid- and Metal-Tolerant Sulfate-Reducer

  • Nguyen, Hai Thi;Nguyen, Huong Lan;Nguyen, Minh Hong;Nguyen, Thao Kim Nu;Dinh, Hang Thuy
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.7
    • /
    • pp.1005-1012
    • /
    • 2020
  • Acid mine drainage (AMD) has been a serious environmental issue that threatens soil and aquatic ecosystems. In this study, an acid-tolerant sulfate-reducing bacterium, strain S4, was isolated from the mud of an AMD storage pond in Vietnam via enrichment in anoxic mineral medium at pH 5. Comparative analyses of sequences of the 16S rRNA gene and dsrB gene involved in sulfate reduction revealed that the isolate belonged to the genus Desulfovibrio, and is most closely related to Desulfovibrio oxamicus (with 99% homology in 16S rDNA sequence and 98% homology in dsrB gene sequence). Denaturing gradient gel electrophoresis (DGGE) analyses of dsrB gene showed that strain S4 represented one of the two most abundant groups developed in the enrichment culture. Notably, strain S4 was capable of reducing sulfate in low pH environments (from 2 and above), and resistance to extremely high concentration of heavy metals (Fe 3,000 mg/l, Zn 100 mg/l, Cu 100 mg/l). In a batch incubation experiment in synthetic AMD with pH 3.5, strain S4 showed strong effects in facilitating growth of a neutrophilic, metal sensitive Desulfovibrio sp. strain SR4H, which was not capable of growing alone in such an environment. Thus, it is postulated that under extreme conditions such as an AMD environment, acid- and metal-tolerant sulfate-reducing bacteria (SRB)-like strain S4 would facilitate the growth of other widely distributed SRB by starting to reduce sulfate at low pH, thus increasing pH and lowering the metal concentration in the environment. Owing to such unique physiological characteristics, strain S4 shows great potential for application in sustainable remediation of AMD.

Studies on Endpoints of Toxicological Evaluation of Heavy Metals in Brachinella kugenumaensis (카드뮴과 구리에 노출된 풍년새우의 생태독성)

  • Park, Ki-Yun;Lee, Dong-Ju;Lee, Chang-Hoon;Won, Du-Hee;Lee, Won-Choel;Kwak, Inn-Sil
    • Environmental Analysis Health and Toxicology
    • /
    • v.24 no.3
    • /
    • pp.241-249
    • /
    • 2009
  • Heavy metal contaminants on the aquatic environment are of interest because they can have severe effects on economy and public health. Recently, the studies for monitoring of heavy metals try to do on aquatic system to assess safety and health of ecosystem by heavy metals. Thus, biological responses were investigated on Korean fairy shrimp Branchinella kugenumaensis exposed to cadmium (Cd) or copper (Cu) for long-periods (30 days). The survival rate decreased significantly (p<0.05) on B. kugenumaensis exposed to Cd and Cu at all concentrations. Especially, the highest decrease was observed at the relatively high concentration of Cd and Cu (p<0.01) and the response by Cd exposure was at dose-dependent. The growth rates were also decreased significantly (p<0.05) on B. kugenumaensis exposed to Cd and Cu for at all concentrations. Then, the reproduction rate, numbering cyst, was decreased significantly (p<0.01) on B. kugenumaensis after Cd or Cu exposures. Long exposure of the relatively high concentration Cd and Cu can have severe effects on the reproduction, while exposures of Cd and Cu can not have effects on sex ratios of B. kugenumaensis. Additionally, asymmetric telson deformity was only observed after Cd exposure. Therefore, these results suggest that B. kugenumaensis is a sensitive bio-indicator of heavy metal exposure and these biological responses of B. kugenumaensis give important information for long-term monitoring on aquatic ecosystem.

Effects of Rubber Chips from Used Tires on Spots Turf Ground as Soil Conditioner (Rubber chip의 경기장 지반 물리성 개선과 잔디 생육에 미치는 효과)

  • ;;;David Minner
    • Asian Journal of Turfgrass Science
    • /
    • v.16 no.1
    • /
    • pp.19-30
    • /
    • 2002
  • This study was conducted to investigated the effects of rubber chips from used tires on sports turf ground as soil conditioner to improve soil physical properties. The release of heavy metal ions was detected to check the soil contamination by incorporation of recycled rubber chips with topsoil. The effects of the chips were also evaluated as topdressing material to improve surface resilience. The rate of rubber chips showed a positive relationship with soil temperature increasement. Incorporation of rubber chips increased soil temperature on surface at 2.5 cm-depth. The rates of rubber chip showed a negative relationship with ground cover rate of turfgrass in early growth season. However, after 20 weeks, treatment of 10% rubber chips at 2.5 cm-depth showed a prominent cover rate of 70% which was not significantly different with untreated control. Incorporation of rubber chips within topsoil seemed to reduce soil compaction, but the effects was not prominent on physical properties. Rubber chips did not affect chemical properties and heavy metal contamination to soil environment. Rubber chips improved resilience of the compacted ground surface as topdressing material, this effect was prominent when aerification practise was preceded.

Quantification of Inhibitory Impact of Heavy Metals on the Growth of Escherichia coli (중금속에 의한 대장균 성장 저해의 정량적 평가)

  • Jo, Gyeong-Suk;Gu, So-Yeon;Kim, Ji-Yeong;Ryu, Hui-Uk
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.4
    • /
    • pp.341-346
    • /
    • 2004
  • The quantification of the toxicological effects of the heavy metals such as Cu, Cd, Cr, Hg, and Zn on the growth of Escherichia coli was performed, and the variations of toxicwith exposure time were evaluated in adaptation procedure. The characteristics of growth inhibition on Escherichia coli by heavy metals were different with metal species, and critical concentration of each metal, which inhibited cell growth completely, were Cu of 3.5 mM, Zn of 2.5 mM, Cd of 1.5 mM, Cr of 1.2 mM, and Hg of 0.12 mM, respectively. The tolerance of E. coli against heavy metals, based on $EC_{50}$ values, increased in order of Cu > Zn > Cr > Cd > Hg. The slopes obtained from the relationship between ECso values and expose time corresponds to adaptability of test organisms to the toxicants. The adaptability of test organisms to the toxicants was much higher at higher slope values. Adaptability of E. coli on heavy metals increased in order to Zn > Cd > CU >> Cr> Hg.

Associations of Low Environmental Exposure to Multiple Metals with Renal Tubular Impairment in Korean Adults

  • Lim, Hyungryul;Lim, Ji-ae;Choi, Jong Hyuk;Kwon, Ho-jang;Ha, Mina;Kim, Heon;Park, Jung-duck
    • Toxicological Research
    • /
    • v.32 no.1
    • /
    • pp.57-64
    • /
    • 2016
  • Recently several studies reported that the renal toxicity of lead (Pb) and cadmium (Cd) may exist in even a low level exposure. In terms of the deterioration of tubular function, it affects the loss of divalent metals and leads to other complications, so renal tubular effect of heavy metals should be well managed. Considering the exposure to heavy metals in reality, it is hard to find the case that human is exposed to only one heavy metal. We designed a cross-sectional study using Korean Research Project on the Integrated Exposure Assessment (KRIEFS) data to investigate the renal effects of multiple metal exposure in general population. We used blood Pb and urinary Cd as exposure measures, and urinary N-acetyl-${\beta}$-D-glucosaminidase (NAG) and ${\beta}_2$-microglobulin (${\beta}_2$-MG) as renal tubular impairment outcome. We conducted linear regression to identify the association between each heavy metal and urinary NAG and ${\beta}_2$-MG. And then, we conducted linear regression including the interaction term. Of 1953 adults in KRIEFS (2010~2011), the geometric mean of blood Pb and urinary Cd concentration was $2.21{\mu}g/dL$ (geometric $SD=1.49{\mu}g/dL$) and $1.08{\mu}g/g\;cr$ (geometric $SD=1.98{\mu}g/g\;cr$), respectively. In urinary Cd, the strength of the association was also high after adjusting (urinary NAG: ${\beta}=0.44$, p < 0.001; urinary ${\beta}_2$-MG: ${\beta}=0.13$, p = 0.002). Finally, we identified the positive interactions for the two renal biomarkers. The interaction effect of the two heavy metals of ${\beta}_2$-MG was greater than that of NAG. It is very important in public health perspective if the low level exposure to multiple heavy metals has an interaction effect on kidney. More epidemiological studies for the interaction and toxicological studies on the mechanism are needed.

An Effective Method to Remove Toxic Material in Metal Plating Wastewater by Steel Mill Wastes (II) (도금폐수중의 유해물질 (중금속 및 시안) 처리를 위한 제철폐기물의 효율적 이용 방법 (II))

  • 현재혁;김민길;백정선;조미영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.240-244
    • /
    • 1998
  • This study was carried out to investigate the efficiency of steel mill slag and sludge in removing heavy metals and cyanide in metal plating wastewater. Laboratory experiments were peformed with jar tester, The tests were peformed at ambient temperature. The results of tests showed that overall rates metals removed were greater than 90 %. Metals were removed from solution as the combined effects of adsorption and precipitation in alkaline condition. The removal efficiency of cyanide by steel mill wastes was above 90 % at optimum conditions. In view of the test results and other engineering characteristics of steel mill slag and sludge, these industrial by-products from steel industry have a high potential to be used in metal plating wastewater treament and were particularly beneficial.

  • PDF

Electrodialysis of metal plating wastewater with neutralization pretreatment: Separation efficiency and organic removal

  • Park, Yong-Min;Choi, Su-Young;Park, Ki-Young;Kweon, Jihyang
    • Membrane and Water Treatment
    • /
    • v.11 no.3
    • /
    • pp.179-187
    • /
    • 2020
  • Electrodialysis has been applied for treatment of industrial wastewater including metal electroplating. The wastewater from metal plating industries contains high concentrations of inorganics such as copper, nickel, and sodium. The ions in the feed were separated due to the electrical forces in the electrodialysis. The concentrate compartment is exposed to the elevated concentrations of the ions and yielded inorganic precipitations on the cation exchange membranes. The presence of organic matter in the metal plating wastewater affects complex interfacial reactions, which determines characteristics of inorganic scale fouling. The wastewater from a metal plating industry in practice was collected and the inorganic and organic compositions of the wastewater were analyzed. The performance of electrodialysis of the raw wastewater was evaluated and the effects of adjusting pH of the raw water were also measured. The integrated processes with neutralization and electrodialysis showed great removal of heavy metals sufficient to discharge to aquatic ecosystem. The organic matter in the raw water was also reduced by the neutralization, which might enhance removal performance and alleviate organic fouling in the integrated system.

Evaluation of the Relationship between the Exposure Level to Mixed Hazardous Heavy Metals and Health Effects Using Factor Analysis (요인분석을 이용한 유해 중금속 복합 노출수준과 건강영향과의 관련성 평가)

  • Kim, Eunseop;Moon, Sun-In;Yim, Dong-Hyuk;Choi, Byung-Sun;Park, Jung-Duck;Eom, Sang-Yong;Kim, Yong-Dae;Kim, Heon
    • Journal of Environmental Health Sciences
    • /
    • v.48 no.4
    • /
    • pp.236-243
    • /
    • 2022
  • Background: In the case of multiple exposures to different types of heavy metals, such as the conditions faced by residents living near a smelter, it would be preferable to group hazardous substances with similar characteristics rather than individually related substances and evaluate the effects of each group on the human body. Objectives: The purpose of this study is to evaluate the utility of factor analysis in the assessment of health effects caused by exposure to two or more hazardous substances with similar characteristics, such as in the case of residents living near a smelter. Methods: Heavy metal concentration data for 572 people living in the vicinity of the Janghang smelter area were grouped based on several subfactors according to their characteristics using factor analysis. Using these factor scores as an independent variable, multiple regression analysis was performed on health effect markers. Results: Through factor analysis, three subfactors were extracted. Factor 1 contained copper and zinc in serum and revealed a common characteristic of the enzyme co-factor in the human body. Factor 2 involved urinary cadmium and arsenic, which are harmful metals related to kidney damage. Factor 3 encompassed blood mercury and lead, which are classified as related to cardiovascular disease. As a result of multiple linear regression analysis, it was found that using the factor index derived through factor analysis as an independent variable is more advantageous in assessing the relevance to health effects than when analyzing the two heavy metals by including them in a single regression model. Conclusions: The results of this study suggest that regression analysis linked with factor analysis is a good alternative in that it can simultaneously identify the effects of heavy metals with similar properties while overcoming multicollinearity that may occur in environmental epidemiologic studies on exposure to various types of heavy metals.

The Effects of pH on Microfluidics Flow Characteristics of Heavy Metals (중금속 오염물의 미세유체 흐름특성에 미치는 pH 영향에 관한 연구)

  • Han, Jung-Geun;Kim, Dong-Chan;Hong, Kikwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.1
    • /
    • pp.23-32
    • /
    • 2015
  • This paper describes a flow experiment and characteristics of heavy metals based on microfluidics, in order to improve the prefabricated vertical drain system that is possible pollutants removal and soil improvement in soft ground polluted with various pollutants, simultaneously. The result showed that the surface with hydrophobic condition affected large effect on flow velocity pollutants, and pH condition was also influence factor for change of flow velocity. Especially, the flow velocity of lead has risen slightly, when pH was close to basicity in complex heavy metal. This means that lead pollutant can reduce a hydrophobic characteristic in comparison with a copper pollutant.

Assessment of Metal Pollution of Road-Deposited Sediments and Marine Sediments Around Gwangyang Bay, Korea (광양만 내 도로축적퇴적물 및 해양퇴적물의 금속 오염 평가)

  • JEONG, HYERYEONG;CHOI, JIN YOUNG;RA, KONGTAE
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.25 no.2
    • /
    • pp.42-53
    • /
    • 2020
  • In this study, heavy metal in road-deposited sediments (RDS) and marine sediment around Gwangyang Bay area have been investigated to assess the pollution status of metals and to understand the environmental impact of RDS as a potential source of metal pollution. Zn concentration for <63 ㎛ size fraction was the highest (2,982 mg/kg), followed by Cr, Ni, Pb, Cu, As, Cd, and Hg. Metal concentrations in RDS increased with decreasing particle size and relatively higher concentrations were observed around the metal waste and recycling facilities. For particle size in RDS smaller than 125 ㎛, EF values indicated that Zn was very high enrichment and Cr, Cd, Pb were significant enrichment. The concentrations of metals in marine sediments were mostly below the TEL value of sediment quality guidelines of Korea. However, the Zn concentrations has increased by 30~40% compared to 2010 year. The amounts of Zn, Cd and Pb in less than 125 ㎛ fraction where heavy metals can be easily transported by stormwater runoff accounted for 54% of the total RDS. The study area was greatly affected by Zn pollution due to corrosion of Zn plating materials by traffic activity as well as artificial activities related to the container logistics at Gwangyang container terminal. The fine particles of RDS are not only easily resuspended by wind and vehicle movement, but are also transported to the surrounding environments by runoff. Therefore, further research is needed on the adverse effects on the environment and ecosystem.