• Title/Summary/Keyword: Heavy metal effects

Search Result 477, Processing Time 0.029 seconds

Nutritional Characteristics and Damage Mitigation Effects on Heavy-metals Exposure of Peking-Duck By-Product Extracts Added with Medicinal Herbs ( II ) Damage Mitigation Effects on Heavy-metals Exposure of Peking-Duck By-Product Extracts (오리부산물과 한약재를 이용한 추출액의 영양성분 및 중금속 노출에 대한 피해 완화 효과 (II) 중금속 노출에 대한 오리추출액의 피해 완화 효과)

  • 한종현;이우진;조성균;이미정;정미란;전정우;김운영;박성혜
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.13 no.4
    • /
    • pp.293-304
    • /
    • 2003
  • This study was performed to investigate the effects of peking-duck extracts added with medicinal herbs(DJ) on the intoxication of heavy metals (Hg, Pb, Cd, As) in rats. Sprague-Dawley rats weighing 150$\pm$15g, were randomly assigned to groups: basal diet only in normal control group(NCG): basal diet and heavy metals without DJ injection in heavy metal control group(HMC); basal diet, heavy metals and DJ(3mg/ml) injection in heavy metal low duck-juice group(HMLD), basal diet, heavy metals and DJ(30mg/ml) injection in heavy metal middle duck-juice group(HMMD): basal diet, heavy metal and DJ(300mg/ml) injection in heavy metal high duck-juice group(HMHD). Hg and As was injected by 50ppm and Cd and Pb by 25ppm for 17days. Also DJ oral feeding was conducted for 28days. The result of this study were as follows: Food intake and body weight gain in heavy metal administered groups were lower than those of NCG. Liver, kidney and testis weights were not significantly different among 5 groups. GOT, GPT and BUN activities were significantly reduced in DJ treated groups as compared to HMC. DJ showed the suppressing effect on the accumulation of Hg, Pb and Cd in serum, liver and kidney. Fecal Hg and Cd excretions increased with DJ feeding. The results suggested that DJ may have some protective effects on Hg, Cd and Pb intoxication by reducing the accumulation in tissues and increasing excretion. This study also showed the effective way of using duck-extract and its application to the oriental medicine.

  • PDF

Assessment of Heavy Metal Effects on the Freshwater Microalga, Chlorella vulgaris, by Chlorophyll Fluorescence Analysis (엽록소형광분석을 이용한 담수산 클로렐라(Chlorella vulgaris)에 미치는 중금속의 영향 평가)

  • Oh, Soon-Ja;Koh, Seok-Chan
    • Journal of Environmental Science International
    • /
    • v.24 no.12
    • /
    • pp.1591-1600
    • /
    • 2015
  • The response of the freshwater microalga, Chlorella vulgaris, to heavy metal stress was examined based on chlorophyll fluorescence analysis to assess the toxic effects of heavy metals in freshwater ecosystems. When toxic effects were analyzed using regular chlorophyll fluorescence analysis, photosystem II activity($F_v/F_m$) decreased significantly when exposed to $Cu^{2+}$ and $Hg^{2+}$ for 12 h, and decreased in the order of $Hg^{2+}>Cu^{2+}>Cd^{2+}>Ni^{2+}$ when exposed for 24h. The effective photochemical quantum yield(${\phi}{\prime}_{PSII}$), chlorophyll fluorescence decrease ratio($R_{Fd}$), minimal fluorescence yield($F_o$), and non-photochemical quenching(NPQ), but not photochemical quenching(qP), responded sensitively to $Hg^{2+}$, $Cu^{2+}$, and $Cd^{2+}$. These results suggest that $F_v/F_m$, as well as ${\phi}{\prime}_{PSII}$, $R_{Fd}$, $F_o$, and NPQ could be used to assess the effects of heavy metal ions in freshwater ecosystems. However, because many types of heavy metal ions and toxic compounds co-occur under natural conditions, it is difficult to assess heavy metal toxicity in freshwater ecosystems. When Chlorella was exposed to heavy metal ions for 12 or 24h, $F_v/F_m$ and maximal fluorescence yield($F_m$) changed in response to $Hg^{2+}$ and $Cu^{2+}$ based on image analysis. However, assessing quantitatively the toxic effects of several heavy metal ions is challenging.

Short-Term Effects of Low-Level Heavy Metal Contamination on Soil Health Analyzed by Nematode Community Structure

  • Park, Byeong-Yong;Lee, Jae-Kook;Ro, Hee-Myong;Kim, Young Ho
    • The Plant Pathology Journal
    • /
    • v.32 no.4
    • /
    • pp.329-339
    • /
    • 2016
  • The short-term effects of low-level contamination by heavy metals (As, Cd, Cu, and Pb) on the soil health were examined by analyzing soil nematode community in soils planted with tomatoes. For this, the soils were irrigated with five metal concentrations ([1, 1/4, $1/4^2$, $1/4^3$, and 0] ${\times}$ maximum concentrations [MC] detected in irrigation waters near abandoned mine sites) for 18 weeks. Heavy metal concentrations were significantly increased in soils irrigated with MC of heavy metals, among which As and Cu exceeded the maximum heavy metal residue contents of soil approved in Korea. In no heavy metal treatment controls, nematode abundances for all trophic groups (except omnivorous-predatory nematodes [OP]) and colonizer-persister (cp) values (except cp-4-5) were significantly increased, and all maturity indices (except maturity index [MI] of plant-parasitic nematodes) and structure index (SI) were significantly decreased, suggesting the soil environments might have been disturbed during 18 weeks of tomato growth. There were no concentration-dependent significant decreases in richness, abundance, or MI for most heavy metals; however, their significant decreases occurred in abundance and richness of OP and cp-4, MI2-5 (excluding cp-1) and SI, indicating disturbed soil ecosystems, at the higher concentrations (MC and MC/4) of Pb that had the most significant negative correlation coefficients for heavy metal concentrations and nematode community among the heavy metals. Therefore, the short-term effects of low-level heavy metal contamination on soil health can be analyzed by nematode community structures before the appearance of plant damages caused by the abiotic agents, heavy metals.

Effects of Cadmium on the Degradation of Butachlor Pollutant by Microorganism (Cadmium이 토양미생물에 의한 Butachlor 오염물질 분야에 미치는 영향)

  • 허태웅;정문호
    • Journal of Environmental Health Sciences
    • /
    • v.20 no.3
    • /
    • pp.78-84
    • /
    • 1994
  • The effects of heavy metal, Cd on the degradation of the herbicide butachlor (N-Butoxymethyl-2-chlor-2',6'-diethylacetanilide) in soils were examined the laboratory. The degradation of the herbicide in soil was greatly inhibited by the amendment of the heavy metal, Cd. The inhibited rate of Cd concentration was high in the order of 30 ppm>20 ppm> 10 ppm>0 ppm. And tile degradation rate of butachlor was high in order of 80 $\mu$M>40 $\mu$M>20 $\mu$M. The effects of Cd on the degradation of the butachlor in soil varied with concentration of heavy metal and butachlor.

  • PDF

EDDS Effects on Heavy Metal Uptake by Bioenergy Plants (EDDS가 바이오에너지 작물의 중금속 흡수에 미치는 영향)

  • Lee, Junghun;Sung, Kijune
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.4
    • /
    • pp.8-14
    • /
    • 2015
  • Plants grown in metal-contaminated sites have to be managed and disposed of safely even in phytoremediation because heavy metals can be transferred to other organisms through the food chain, which could result in bioaccumulation in organisms of a higher trophic level. However, if the harvested plants could be used for bioenergy, the ecological risk is reduced and phytoremediation improves economic feasibility. This study researched the effects of EDDS (Ethylenediamine disuccinate) on the heavy metal uptake performance of Brassica campetris and Sorghum biocolor, both of which have potential as bioenergy plants. The results showed that EDDS could increase Pb, Cu, Ni, Cd, and Zn concentrations in the roots and shoots of both of these plants. Furthermore, EDDS reduced the metal inhibition of the S. bicolor length growth. The translocation factors (TF) of S. bicolor and B. campestris are smaller than one for all five heavy metals tested and decreased by the following order: heavy metal + EDDS > heavy metals only > uncontaminated soil. The results suggest that with regard to plant growth and metal accumulation, S. bicolor treated with EDDS is more suitable than is B. campestris for the phytoremediation of soils contaminated with multiple metal species.

Removal of Heavy Metals by Sawdust Adsorption: Equilibrium and Kinetic Studies

  • Lim, Ji-Hyun;Kang, Hee-Man;Kim, Lee-Hyung;Ko, Seok-Oh
    • Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.79-84
    • /
    • 2008
  • Adsorption of heavy metals by sawdust was investigated to evaluate the effectiveness of using sawdust to remove heavy metals from aqueous solutions. Kinetic and isotherm studies were carried out by considering the effects of initial concentration and pH. The adsorption isotherms of heavy metals fitted the Langmuir or Freundlich model reasonably well. The adsorption capacity of metal was in the order $Pb^{2+}$ > $Cu^{2+}$ > $Zn^{2+}$. A high concentration of co-existing ions such as $Ca^{2+}$ and $Mg^{2+}$ depressed the adsorption of heavy metal. Adsorption data showed that metal adsorption on sawdust follows a pseudo-second-order reaction. Kinetic studies also indicated that both surface adsorption and intraparticle diffusion were involved in metal adsorption on sawdust. Column studies prove that sawdust could be effective biosorbent for the removal of heavy metals from aqueous phase.

Effects of Heavy Metal and pH on Bacterial Growth Isolated from the Contaminated Smelter Soil (제련소 인근 토양에서 분리한 박테리아 생장에 미치는 중금속 및 pH 영향)

  • Keum, Mi-Jung;Yoon, Min-Ho;Nam, In-Hyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.4
    • /
    • pp.113-121
    • /
    • 2015
  • The contaminated soil at abandoned smelter areas present challenge for remediation, as the degraded materials are typically deficient in nutrients, and rich in toxic heavy metals and metalloids. Bioremediation technique is to isolate new strains of microorganisms and develop successful protocols for reducing metal toxicity with heavy metal tolerant species. The present study collected metal contaminated soil and characterized for pH and EC values, and heavy metal contents. The pH value was 5.80, representing slightly acidic soil, and EC value was 13.47 mS/m. ICP-AES analytical results showed that the collected soil samples were highly contaminated with various heavy metals and metalloids such as lead (183.0 mg/kg), copper (98.6 mg/kg), zinc (91.6 mg/kg), and arsenic (48.1 mg/kg), respectively. In this study, a bacterial strain, Bacillus cereus KM-15, capable of adsorbing the heavy metals was isolated from the contaminated soils by selective enrichment and characterized to apply for the bioremediation. The effects of heavy metal on the growth of the Bacillus cereus KM-15 was determined in liquid cultures. The results showed that 100 mg/L arsenic, lead, and zinc did not affect the growth of KM-15, while the bacterial growth was strongly inhibited by copper at the same concentration. Further, the ability of the bacteria to adsorb heavy metals was evaluated.

Removal Effect of Biostone and Green Tea on the Heavy Metal Toxicity during Seed Germination of Arabidopsis thaliana (애기장대의 종자 발아에 미치는 맥반석과 녹차의 중금속 제거 효과)

  • 박종범
    • Journal of Environmental Science International
    • /
    • v.12 no.12
    • /
    • pp.1303-1308
    • /
    • 2003
  • This experiment was carried out to investigate the effects of heavy metals (cadmium, chromium, copper and lead) on the seed germination of Arabidopsis thaliana, and examinated the removal effects of biostone and green tea on the heavy metal toxicity. Cadmium and chromium among the four heavy metals had no effect on the seed germination even in the concentration fifty times higher than in the official standard concentration of pollutant exhaust notified by the Ministry of Environment. However, seeds were not germinated in the concentration of copper ten times higher and in the concentration of lead fifty times higher than the official standard concentration. When seeds were sown in the solutions of lead (15, 20, 25 and 30 mg/L) and copper(15 and 20 mg/L), the seed germination rates were 0% and less than 10%, respectively. However, when biostone(3 g/30 $m\ell$) was added, the seed germination rate was 100% in all the concentrations. The germination rate was 100% in distilled water and copper solution (5 mg/L). However, green tea (0.2 g/30 $m\ell$) was added, the seed germination rate was 0% in both. The results show that cadmiun and chromium had no effect on the seed germination, but lead and copper decreased the rate of seed germination of Arabidopsis thaliana, Biostone removed heavy metal toxicity, but green tea did not removed heavy metal toxicity during germination.

Ecological study on effects of heavy metal accumulation on pillbugs (토양 내 서식하는 공벌레의 중금속 축적에 따른 생태적 연구)

  • Lee, Sang-Don
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.5
    • /
    • pp.675-684
    • /
    • 2011
  • In nature, the overall effect of heavy metals on the biota can be influenced by a number of environmental factors like soil characteristics and air pollution by elevated $CO_2$. Pillbugs (Isopoda, Armadillium vulgare) take up heavy metals with their food and store them mainly in the vesicles of hepatopancreas. They accumulate certain metals, occur in relatively large numbers, are easily collected and identified, and provide sufficient material for analysis. The species are decomposing litter well and soil impurities into N and P. Therefore, it has been suggested that total body concentration of metals in pillbugs could be positively correlated to the levels of environmental exposure and that pillbugs could be used as biological indicators of metal pollution and global change by $CO_2$. The aim of the study is to determine effects of heavy metal concentrations in soil and elevated $CO_2$ on pillbugs' body accumulation of heavy metal and growth rate. In this study, the concentrations of six metals (Fe, Mg Cu, Zn, Pb, Cd) have been determined. Pillbugs (N=287) were collected at five sites during Jul-Aug, 2006. Cu and Zn concentrations in the body were much higher than in the soils(1.39-41.70 times). This indicated that bioaccumulation of some of the heavy metals were increasing in the food-chain. The high bioconcentration of lead in Sangam may be partly associated with reclaimed land uses.

Effects of pH and slow mixing conditions on heavy metal hydroxide precipitation (pH와 완속교반 조건에 따른 중금속 수산화물 화학침전 특성)

  • Park, Jong-Hun;Choi, Gyu-Jin;Kim, Sang-Hyoun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.2
    • /
    • pp.50-56
    • /
    • 2014
  • Conventional coagulation-gravity settling processes in heavy metal removal have a problem in coagulant cost and instability of the settling efficiency. The authors investigated the effects of pH and slow mixing conditions on heavy metal hydroxide precipitation and the particle size distribution of the precipitate for a precipitation-membrane separation process. The optimum pH values for the hydroxide precipitation ranged from 9 to 10. The addition of $FeCl_3$ did not enhance the heavy metal removal. 20 min of slow mixing at 70 rpm showed the maximum heavy metal removal to meet the water quality criteria for effluent discharge. More than 99.9% of the heavy metal precipitate particles were bigger than $2{\mu}m$.